MJ Building

Платформа MJ-Building

ИД MetalJournal приступает к созданию Проекта MJ-Building.

Материалы проекта доступны тут:


Целью Проекта является отображение в режиме реального времени ассортимента услуг, товаров наличия и цен ведущих производителей и трейдеров строительных материалов; проектных и строительных компаний.

Главная отличительная особенность Проекта:
для Заказчиков - возможность быстрого комплексного оформления заказа с последующей отгрузкой/доставкой товара к месту назначения; нахождение оптимального решения по подбору  необходимой строительной, ремонтной и проектной компании;
для Продавцов товаров и услуг- присутствие на специализированной интернет-платформе для продвижения своей продукции и торговой марки.
Созданный интернет-портал дает возможность пользователям осуществлять просмотр товарной номенклатуры, цен и наличия, рассчитывать транспортную логистическую схему, ознакамливаться с рекламной и новостной информацией.

Уважаемые Партнеры!

На нашей платформе MJ-Building можно размещать информацию:

  • Купить стройматериалы
  • Купить кирпич
  • Купить плиты перекрытия
  • Построить дом
  • Купить дом
  • Купить квартиру
  • Снять дом
  • Снять квартиру
  • Продать недвижимость
  • Купить недвижимость
  • Продать стройматериалы
  • Продать кирпич
  • Продать плиты перекрытия
  • Продать дом
  • Продать квартиру
  • Сдать дом
  • Сдать квартиру
  • Аренда недвижимости
  • Строительство
  • Строительная техника
  • Ремонт

Предусматриваются русскоязычная, украиноязычная и англоязычная версии.

Надеемся на плодотворное сотрудничество.

Шановні Партнери!

На нашій платформі MJ-Building можна розміщувати інформацію:

  • Купити будматеріали
  • Купити цеглу
  • Купити плити перекриття
  • Побудувати будинок
  • Купити будинок
  • Купити квартиру
  • Зняти будинок
  • Зняти квартиру
  • Продати нерухомість
  • Купити нерухомість
  • Продати будматеріали
  • Продати цеглу
  • Продати плити перекриття
  • Продати будинок
  • Продати квартиру
  • Здати будинок
  • Здати квартиру
  • Оренда нерухомості
  • Будівництво
  • Будівельна техніка
  • Ремонт

Передбачається російська, українська та англійська версії.

Сподіваємося на плідну співпрацю.

В процессе строительства, эксплуатации и ремонта зданий и сооружений строительные изделия и конструкции, из которых они возводятся, подвергаются различным физико-механическим, физическим, химическим и технологическим воздействиям. От инженера-строителя требуется правильно подобрать материал, который обладает достаточной стойкостью, надёжностью и долговечностью для проектируемой конструкции.

Строительные материалы и изделия в соответствии с теорией искусственных строительных конгломератов делятся на:
·        Природные (естественные) — без изменения состава и внутреннего строения:
o   неорганические (каменные материалы и изделия);
o   органические (древесные материалы, солома, костра, камыш, лузга, шерсть, коллаген).
·        Искусственные:
o   Безобжиговые (твердение при нормальных условиях) и автоклавные (твердение при температуре 175—200 °C и давлении водяного пара 0,9—1,6 МПа);
§  неорганические (клинкерные и клинкеросодержащие цементы, гипсовые, магнезиальные и др.);
§  органические (битумные и дёктёвые вяжущие вещества, эмульсии, пасты);
§  полимерные (термопластичные и термореактивные);
§  комплексные:
§  смешанные (смешения нескольких видов минеральных веществ);
§  компаундированные (смеси и сплавы органических материалов);
§  комбинированные (объединение минерального с органическим или полимерным).
o   Обжиговые — твердение из огненных расплавов:
§  шлаковые (по химической основности шлака);
§  керамические (по характеру и разновидности глины и др. компонентов);
§  стекломассовых (по показателю щелочности шихты);
§  каменное литьё (по виду горной породы);
§  комплексное (по виду соединяемых компонентов, например: шлакокерамические, стеклошлаковые).
По применению классифицируются на две основные категории. К первой категории относят — конструкционные: кирпич, бетон, цемент, лесоматериалы и др. Их применяют при возведении различных элементов зданий (стен, перекрытий, покрытий, полов). Ко второй категории — специального назначения: гидроизоляционные, теплоизоляционные, акустические, отделочные и др.

Основные виды строительных материалов и изделий
·        каменные природные строительные материалы и изделия из них;
·        вяжущие материалы неорганические и органические;
·        лесные материалы и изделия из них;
·        металлические изделия.
В зависимости от назначения, условий строительства и эксплуатации зданий и сооружений подбираются соответствующие строительные материалы, которые обладают определёнными качествами и защитными свойствами от воздействия на них различной внешней среды. Учитывая эти особенности, любой строительный материал должен обладать определёнными строительно-техническими свойствами. Например, материал для наружных стен зданий должен обладать наименьшей теплопроводностью при достаточной прочности, чтобы защищать помещение от потерь тепла; материал сооружения гидромелиоративного назначения — водонепроницаемостью и стойкостью к попеременному увлажнению и высыханию; материал для покрытия дорог (асфальт, бетон) должен иметь достаточную прочность и малую истираемость, чтобы выдержать нагрузки от транспорта.

Свойства
Материалы и изделия должны обладать хорошими свойствами и качествами.
Свойство — характеристика материала, проявляющаяся в процессе его обработки, применении или эксплуатации.
Качество — совокупность свойств материала, обуславливающих его способность удовлетворять определённым требованиям в соответствии с его назначением.
Свойства строительных материалов и изделий классифицируют на четыре основные группы: физические, механические, химические, технологические и др.
К химическим относят способность материалов сопротивляться действию химически агрессивной среды, вызывающие в них обменные реакции, приводящие к разрушению материалов, изменению своих первоначальных свойств: растворимость, коррозионная стойкость, стойкость против гниения, твердение.
Физические свойства: средняя, насыпная, истинная и относительная плотность; пористость, влажность, влагоотдача, теплопроводность.
Механические свойства: пределы прочности при сжатии, растяжении, изгибе, сдвиге, упругость, пластичность, жёсткость, твёрдость.
Технологические свойства: удобоукладываемость, теплоустойчивость, плавление, скорость затвердевания и высыхания.

Физические свойства
1.     Истинная плотность ρ — масса единицы объёма материала в абсолютно плотном состоянии. ρ =m/Va, где Va объём в плотном состоянии. [ρ] = г/см³; кг/м³; т/м³. Например, гранит, стекло и другие силикаты практически абсолютно плотные материалы. Определение истинной плотности: предварительно высушенную пробу измельчают в порошок, объём определяют в пикнометре (он равен объёму вытесненной жидкости).
2.     Средняя плотность ρm=m/Ve — масса единицы объёма в естественном состоянии. Средняя плотность зависит от температуры и влажности: ρm=ρв/(1+W), где W — относительная влажность, а ρв — плотность во влажном состоянии.
3.     Насыпная плотность (для сыпучих материалов) — масса единицы объёма рыхло насыпанных зернистых или волокнистых материалов.
4.     Пористость П — степень заполнения объёма материала порами. П=Vп/Ve, где Vп — объём пор, Ve — объём материала. Пористость бывает открытая и закрытая.
Открытая пористость По — поры сообщаются с окружающей средой и между собой, заполняются водой при обычных условиях насыщения (погружении в ванну с водой). Открытые поры увеличивают проницаемость и водопоглощение материала, снижают морозостойкость.
Закрытая пористость Пз=П-По. Увеличение закрытой пористости повышает долговечность материала, снижает звукопоглощение.
Пористый материал содержит и открытые, и закрытые поры.

Гидрофизические свойства
1.     Водопоглощение пористых материалов определяют по стандартной методике, выдерживая образцы в воде при температуре 20±2 °C. При этом вода не проникает в закрытые поры, то есть водопоглощение характеризует только открытую пористость. При извлечении образцов из ванны вода частично вытекает из крупных пор, поэтому водопоглощение всегда меньше пористости. Водопоглощение по объёму Wo (%) — степень заполнения объёма материала водой: Wo=(mв-mc)/Ve*100, где mв — масса образца материала, насыщенного водой; mc — масса образца в сухом состоянии. Водопоглощение по массе Wм (%) определяют по отношению к массе сухого материала Wм=(mв-mc)/mc*100. Wo=Wм*γ, γ — объемная масса сухого материала, выраженная по отношению к плотности воды (безразмерная величина). Водопоглощение используют для оценки структуры материала с помощью коэффициента насыщения: kн = Wo/П. Он может меняться от 0 (все поры в материале замкнутые) до 1 (все поры открытые). Уменьшение kн говорит о повышении морозостойкости.
2.     Водопроницаемость — это свойство материала пропускать воду под давлением. Коэффициент фильтрации kф (м/ч — размерность скорости) характеризует водопроницаемость: kф=Vв*а/[S(p1-p2)t], где kф=Vв — количество воды, м³, проходящей через стенку площадью S = 1 м², толщиной а = 1 м за время t = 1ч при разности гидростатического давления на границах стенки p1 — p2 = 1 м водного столба.
3.     Водонепроницаемость материала характеризуется маркой W2; W4; W8; W10; W12, обозначающей одностороннее гидростатическое давление в кгс/см², при котором бетонный образец-цилиндр не пропускает воду в условиях стандартного испытания. Чем ниже kф, тем выше марка по водонепроницаемости.
4.     Водостойкость характеризуется коэффициентом размягчения kp = Rв/Rс, где Rв — прочность материала насыщенного водой, а Rс — прочность сухого материала. kp меняется от 0 (размокающие глины) до 1 (металлы). Если kp меньше 0,8, то такой материал не используют в строительных конструкциях, находящихся в воде.
5.     Гигроскопичность — свойство капиллярно-пористого материала поглощать водяной пар из воздуха. Процесс поглощения влаги из воздуха называется сорбцией, он обусловлен полимолекулярной адсорбцией водяного пара на внутренней поверхности пор и капиллярной конденсацией. С повышением давления водяного пара (то есть увеличением относительной влажности воздуха при постоянной температуре) возрастает сорбционная влажность материала.
6.     Капиллярное всасывание характеризуется высотой поднятия воды в материале, количеством поглощённой воды и интенсивностью всасывания. Уменьшение этих показателей отражает улучшение структуры материала и повышение его морозостойкости.
7.     Влажностные деформации. Пористые материалы при изменении влажности меняют свой объём и размеры. Усадка — уменьшение размеров материала при его высыхании. Набухание происходит при насыщении материала водой.

Теплофизические свойства
1.     Теплопроводность — свойство материала передавать тепло от одной поверхности к другой. Формула Некрасова связывает теплопроводность λ [Вт/(м•С)] с объемной массой материала, выраженной по отношению к воде: λ=1,16√(0,0196 + 0,22γ2)-0,16. При повышении температуры теплопроводность большинства материалов возрастает. R — термическое сопротивление, R = 1/λ.
2.     Теплоёмкость с [ккал/(кг•С)] — то количество тепла, которое необходимо сообщить 1 кг материала, чтобы повысить его температуру на 1 °C. Для каменных материалов теплоёмкость меняется от 0,75 до 0,92 кДж/(кг•С). С повышением влажности возрастает теплоёмкость материалов.
3.     Огнеупорность — свойство материала выдерживать длительное воздействие высокой температуры (от 1580 °C и выше), не размягчаясь и не деформируясь. Огнеупорные материалы применяют для внутренней футеровки промышленных печей. Тугоплавкие материалы размягчаются при температуре выше 1350 °C.
4.     Огнестойкость — свойство материала сопротивляться действию огня при пожаре в течение определённого времени. Она зависит от сгораемости материала, то есть от его способности воспламеняться и гореть. Несгораемые материалы — бетон, кирпич, сталь и т. д. Но при температуре выше 600 °C некоторые несгораемые материалы растрескиваются (гранит) или сильно деформируются (металлы). Трудносгораемые материалы под воздействием огня или высокой температуры тлеют, но после прекращения действия огня их горение и тление прекращается (асфальтобетон, пропитанная антипиренами древесина, фибролит, некоторые пенопласты). Сгораемые материалы горят открытым пламенем, их необходимо защищать от возгорания конструктивными и другими мерами, обрабатывать антипиренами.
5.     Линейное температурное расширение. При сезонном изменении температуры окружающей среды и материала на 50 °C относительная температурная деформация достигает 0,5—1 мм/м. Во избежание растрескивания сооружения большой протяжённости разрезают деформационными швами.
Морозостойкость строительных материалов: свойство насыщенного водой материала выдерживать попеременное замораживание и оттаивание. Количественно морозостойкость оценивается маркой. За марку принимается наибольшее число циклов попеременного замораживания до −20 °C и оттаивания при температуре 12—20 °C, которое выдерживают образцы материала без снижения прочности на сжатие более 15 %; после испытания образцы не должны иметь видимых повреждений — трещин, выкрашивания (потери массы не более 5 %).

Механические свойства
Упругость — самопроизвольное восстановление первоначальной формы и размера после прекращения действия внешней силы.
Пластичность — свойство изменять форму и размеры под действием внешних сил не разрушаясь, причём после прекращения действия внешних сил тело не может самопроизвольно восстанавливать форму и размер.
Остаточная деформация — пластичная деформация.
Относительная деформация — отношение абсолютной деформации к начальному линейному размеру(ε=Δl/l).
Модуль упругости — отношения напряжения к отн. деформации (Е=σ/ε).
Прочность — свойство материала сопротивляться разрушению под действием внутренних напряжений, вызванных внешними силами или др. Прочность оценивают пределом прочности — временным сопротивлением R, определённом при данном виде деформации. Для хрупких (кирпич, бетон) основная прочностная характеристика — предел прочности при сжатии. Для металлов, стали — прочность при сжатии такая же, как и при растяжении и изгибе. Так как строительные материалы неоднородны, предел прочности определяют как средний результат серии образцов. На результаты испытаний влияют форма, размеры образцов, состояния опорных поверхностей, скорость нагружения. В зависимости от прочности материалы делятся на марки и классы. Марки записываются в кгс/см², а классы — в МПа. Класс характеризует гарантированную прочность. Класс по прочности В называется временным сопротивлением сжатию стандартных образцов (бетонных кубов с размером ребра 150 мм), испытанных в возрасте 28 суток хранения при температуре 20±2 °C с учётом статической изменчивости прочности.
Коэффициент конструктивного качества: ККК=R/γ (прочность на относительную плотность), для стали Ст3 ККК=51 МПа, для высокопрочной стали ККК=127 МПа, тяжёлого бетона ККК=12,6 МПа, древесины ККК=200 МПа.
Твёрдость — показатель, характеризующий свойство материалов сопротивляться проникновению в него другого, более плотного материала. Показатель твёрдости: НВ=Р/F (F — площадь отпечатка, P — это сила), [НВ]=МПа.
Истирание — потеря первоначальной массы образца при прохождении этим образцом определённого пути абразивной поверхности. Истирание: И=(m1-m2)/F, где F — площадь истираемой поверхности.
Износ — свойство материала сопротивляться одновременно воздействию истирающих и ударных нагрузок. Износ определяют в барабане со стальными шарами или без них.
Источник: Википедия

\\ Дополнительные разделы

<< Предыдущие |

Презентация

Обложка

 

 

Контакты

НАШІ КОНТАКТИ:

[email protected]

[email protected]

м. Дніпро

ISSN 20760507

Керівник проекту - Гриньов Володимир Анатолійович

Партнеры