Металлы в авиастроении

07/11/2016 11:29am

Автор: редакционная статья

Категории: применение металлопродукции

Металлы в авиастроении


Металлы на службе самого быстрого вида транспорта.

В предыдущих статьях шла речь об эффективности и выгоде от использования алюминия в производстве транспорта, в том числе и авиационного.
А что же другие металлы?

Магний. Он нашел свое место в производстве современного самолета. Колеса и вилки шасси, передние кромки крыльев, детали сидений, корпусы приборов, различные рычаги и кожухи, двери кабин и фонари – и это далеко не весь перечень применения сплавов магния. В наши дни активно стали использовать магний для изготовки литых крыльев, литых створок люков шасси,  которые легче по весу примерно на 25 %  и дешевле сборных конструкций из деформируемых сплавов.  Например, планер одного из американских истребителей был почти полностью изготовлен из сплавов на основе магния.


Детали из магния


Данные литейные магниевые сплавы с редкоземельными присадками практически беспористы, и потому детали, выполненные из этих сплавов, мало подвержены растрескиванию.

Несмотря на то, что упругость магниевых сплавов меньше, чем упругость алюминиевых и железных сплавов, из-за малой плотности этот металл позволяет получать более жесткие и в то же время достаточно легкие конструкции.

В вертолетостроении магний используют для производства двигателей, в некоторых моделях доля магниевых деталей составляет по массе 23 %.

В ракетостроении наиболее популярны в применении сплавы с торием и цирконием.  Они заслужили такую популярность благодаря повышенной прочности и жаропрочности. Присадка циркония позволяет улучшить пластичные свойства. В некоторых моделях такие сплавы составляли 25 % по массе.

Внедряют и специальные сплавы с цирконием, которые обладают важной способностью – гасить вибрации снарядов,

Если речь заходит о кратковременно работающих конструкциях, то и здесь при производстве вспоминают про магний, поскольку он благодаря своей высокой теплоемкости способен поглотить много тепла и не успеет перегреться за кратковременный полет.

Ракета “Фолкон”  класса  “воздух - воздух” на 90% состоит из магниевых сплавов (корпус и многие другие детали). Помимо обшивки корпуса  без них не обходятся туннельные обтекатели, корпусы систем наведения, корпусы насосов, топливные и кислородные баки, баллоны пневмосистем, опорные узлы, стабилизаторы и др.


Магний в авиации


В спутникостроении изданных сплавов выполняют корпус спутника. Корпус изготовляется из двух сферических оболочек, отштампованных из листов сплава толщиной 0,76 мм, и вся эта конструкция подпирается изнутри каркасом из магниевых труб.

Из-за того, что магний заметно возгоняется в высоком вакууме при низкой температуре, корпус покрывается сложным покрытием, одним из предназначений которого является понижение испарения металла.  
   

   Титан. Это не только легкий и тугоплавкий метал, но и довольно-таки прочный и пластичный.  Вес титана на две трети больше алюминия, прочность больше в 6 раз, а тугоплавкость титана больше чем у алюминия в два с лишним раза.

Он отличается хорошими показателями стойкости. Во влажном воздухе, в морской воде его коррозионная стойкость не хуже нержавеющей стали, а в соляной кислоте во много раз превосходит её. Он, как и нержавеющая сталь, поддается обработке резанием и давлением, а также свариванию и изготовке из него литых деталей.

Основные достоинства титана и его сплавов, такие как комбинация высокой удельной прочности и химической стойкости при нормальных и повышенных температурах (около 300-500º  С) делают их незаменимыми в современном самолетостроении и производстве космических кораблей.


Титан в авиации


В 1956 г. английский летчик Петер Твисс на сверхзвуковом самолете из алюминиевых сплавов  “Фейри Дельта-2” установил новый мировой рекорд по скорости полета, достигши на дистанции 15,5 км скорости 1822 км/ч.

Объем мощности двигателя самолета позволял ему развить ещё большую скорость, но пилот на это пойти не мог, так как при превышении рекордной скорости обшивка самолета из дуралюмина нагрелась бы больше чем до 100º С, и это негативно бы сказалось на прочности обшивки самолета. Поэтому, чтобы достигать таких огромных скоростей, обычную дуралюминовую обшивку меняют на титановую, так как использовать более тяжелую сталь при таких скоростях и нагревах не выгодно.

При замене алюминиевых сплавов или стали на титан в пассажирских самолетах, экономия массы деталей составляет примерно 15-40 %. Несмотря на более дорогую стоимость титана, по сравнению с вышеназванными металлами, все дополнительные затраты окупаются.

Пример пассажирских самолетов   “Дуглас” показывает, что поначалу  из титана изготовляли только некоторые элементы, такие как мотогондолы и противопожарные перегородки. В противопожарных перегородках использование титана эффективно, потому что электропроводность и теплопроводность этого металла в 5 раз меньше чем у стали, и в 15 раз меньше, чем у алюминия.   А вот в новых моделях самолетов уже было более 1000 различных деталей из титана и его сплавов.

Использование титановых сплавов в производстве двигателей реактивных самолетов позволяет уменьшить массу на 100-150 кг.  Планер тоже становится легче (на 300 и более кг).

В двигателях титан применяют для изготовления деталей воздухосборника, корпуса, лопаток и дисков компрессора, и т.д. Особенно выгодным стало применение титана в новых турбовентиляционных двигателях. В гражданской модели самолета детали из титана составляют 1/7 общей массы турбовентиляционного двигателя, в военной – 1/5 общей массы.

В ракетах из титановых сплавов изготавливают корпусы двигателей второй и третей ступеней, баллоны и шаробаллоны для сжатых и сжиженных газов, сопла и др.  У космических капсул  “Меркурий” и “Джемини”  каркас, наружная и внутренняя обшивки сделаны из титановых сплавов.
Титан в виде литых деталей также активно применяется, так как позволяет сократить объем трудовой обработки резанием и уменьшает отходы дорогого металла.

Что же касается применения титана в авиационной электронике, то тут этот металл очень полезен благодаря своим газопоглощающим способностям. Он поглощает газы, оставшиеся после откачки прибора или попавшие в прибор во время эксплуатации. Титан, нанесенный  на поверхность прибора, исполняет роль встроенного насоса, способного работать в течение всей жизни прибора.  500мг титана хватает, что поглощать большие объемы воздуха.

Бериллий. Для тонких профилей, где титан не подходит из-за маленькой  удельной жесткости, а сплавы из стали и никеля очень тяжелы, промышленники обращаются к такому металлу, как бериллий.

Его хрупкость, токсичность металлической пыли и пыли из окислов, редкость и дороговизна – препятствия, которые откладывали применение бериллия в самолетостроении и ракетостроении.

Но после многочисленных исследований, открывших возможности улучшения необходимых свойств этого металла, бериллий все-таки взяли на вооружение производители. Сейчас из него изготовляют стержни, трубы и листы для ракетного, авиационного и атомного производства.

Корпуса жидкостнореактивных двигателей из бериллия  не только в два раза легче, но и служат в 10 раз дольше ввиду высокой теплопроводности этого материала. Бериллий стал находкой для изготовителей колесных тормозов из-за своей легкости и высокой теплопроводности. Тормоза из бериллия дают экономию массы больше 30%, масса самолета снизилась более чем на 600 кг.


Детали из бериллия


То же самое и с крепежными деталями, меньший вес которых не мешает им переносить нагрузки такие же, как у крепежных деталей из стали.  Меньшие центробежные напряжения дисков компрессоров по сравнению с дисками из других металлов – ещё одна заслуга бериллия. Тратится меньше энергии без изменения скорости вращения.

Для защиты сплавов из бериллия от коррозии внедряют методы анодирования. Это позволяет заметно повысить стойкость против окисления при повышенных температурах (жаростойкость).

Также нельзя не отметить, что бериллий благодаря своим свойствам хорошо поглощает тепло, и является гиперпроводником, хорошо проводя электрический ток при низких температурных условиях. 



Александр Рыбаков
Источники использованные при написании статьи:

Ш.Я. Коровский "Летающие металлы"


Презентация

Контакты

 

 

Контакты

НАШІ КОНТАКТИ:

[email protected]

[email protected]

м. Дніпро

ISSN 20760507

Керівник проекту - Гриньов Володимир Анатолійович

Партнеры