Новые технологии прокатного производства

27/12/2013 2:01pm

Автор: Райков Ю. Н., Сивак Б. А., Симаков Ю. В., Мюллер А. Б.

Категории: прокатное производство

В последние годы в технологии прокатного производства наблюдается переходна более новый качественный виток развития. Это обусловлено многими факторами: от создания, внедрения и развития прогрессивных технологий, в том числе и в сталеплавильном производстве, до изменения самой концепции в отношении к прокатному производству. Одним из наиболее важных факторов данного развития в прокатном производстве является возникшая возможность осуществлять абсолютный контроль температурно-деформационным процессом при прокатке на станах последнего поколения. Данная тенденция наиболее ярко проявляется на прокатных станах, предназначенных для производства катанки и мелкого сорта. Постараемся оценить, чем это обусловлено, учитывая возможности, которые предоставляет использование новых подходов в технологии прокатки катанки. В процессе горячей прокатки происходит высокотемпературная термомеханическая обработка металла (ТМО). Однако под ТМО, как правило, понимается не только физическая сущность процесса, но и целенаправленное комплексное воз действие на структуру металлического сплава совокупностью операций деформации, нагрева и охлаждения, в результате которых и происходит формирование окончательной структуры металлического сплава, а, следовательно, и его свойств. Существует большое количество разновидностей термомеханической обработки стали. Их можно разделить на следующие группы:

  • Режимы термомеханической обработки, при которых деформация осуществляется в аустенитном состоянии. К этой группе относятся наиболее известные и изученные методы упрочнения: высокотемпературная термомеханическая обработка (ВТМО) и низкотемпературная термомеханическая обработка (НТМО).
  • Термомеханическая обработка с деформацией в ходе превращения переохлажденного аустенита.

Режимы термомеханической обработки, связанные с деформацией, осуществляемой после превращения аустенита в мартенсит или бейнит. Примером такой обработки является метод упрочнения, связанный с деформационным старением мартенсита.  Для упрочнения стали могут применяться различные комбинации режимов термомеханической обработки, например ВТМО с НТМО, ВТМО с деформационным старением мартенсита и др. Термомеханическая обработка чаще всего является окончательной операцией при изготовлении деталей. Но она может использоваться и как предварительная операция, которая обеспечивает формирование благоприятной структуры при проведении окончательной термической обработки, включающей закалку на мартенсит и отпуск. Традиционно при рассмотрении задачи достижения требуемых свойств в готовой продукции из металлического сплава используют влияние химических элементов на свойства металла и термическую обработку. При этом формирование структуры при нагреве, а в особенности при прокатке, долгое время оставалось «черным ящиком». А ведь именно эти процессы влияют на формирование структуры в готовой продукции. На практике технологи использовали для получения необходимых механических свойств, в готовом прокате применяли только такие механизмы при изготовлении сталей  как легирование и термообработка. В качестве примера приведем недостатки использования традиционных способов изготовления готового проката из рядовых марок сталей. У данного класса сталей структура состоит из феррита с известной незначительной долей перлита. При желании получать менее металлоемкие конструкции и изделия из стали, обладающие повышенной надежностью при низкой себестоимости изготовления, встает проблема повышения прочности проката, полученного в горячекатаном состоянии. Если для увеличения прочности используют только повышение доли перлита путем повышения содержания углерода, то эта возможность ограничена, так как с увеличением прочности благодаря повышению содержания углерода пластичность, вязкость и свариваемость стали резко снижаются, что приводит к отказу от данного проката, так как наряду с прочностью в прокате необходимо также обеспечение вышеперечисленных свойств металла. Изготовление проката из высоколегированных сталей приводит к резкому удорожанию готовой продукции в связи с высокой ценой легирующих элементов и ухудшением технологичности переработки (дополнительная зачистка и т.д.). Дополнительная термообработка после прокатки, такая как закалка+отпуск, позволяет получить повышение прочностных и пластических свойств стали, но этот эффект можно получить только для низколегированных марок сталей. При этом также происходит увеличение себестоимости готовых изделий из стали. Первым шагом использования особого состояния горячекатаного проката, полученного в процессе деформации, явилось использование установок ускоренного охлаждения после прокатки, в особенности применение водяного охлаждения. Использование данной технологии непосредственно в линиях прокатки позволило снизить влияние полного протекания процессов рекристаллизации, ранее формировавших структуру и механические свойства в готовом прокате.

изменение температуры
Следующим шагом в повышении механических свойств стало использование так называемого процесса контролируемой прокатки с использованием принципов термомеханической обработки. Рассмотрим более подробно использованием данных принципов в процессе ТМО. В зависимости от того, как проводить прокатку и нагрев в первую очередь зависит эффективность влияния химического состава и термообработки на конечные свойства металлопроката. Химический состав оказывает большое влияние на изменения структуры и в процессе ТМО, и его влияние на механические свойства должно рассматриваться с позиций всех этапов обработки металла: от нагрева до охлаждения. Термическая обработка с прокатного нагрева лишь фиксирует состояние структуры, полученной на прокатном стане, и хотя здесь существует множество вариантов ее проведения с получением различных комплексов свойств, повышение их значений ограничено данной структурой в процессе прокатки. Термическая обработка вне прокатного стана с удорожанием энергоносителей становится все более нецелесообразной. Ряд режимов термомеханической обработки могут обеспечить наряду с высокими прочностными свойствами повышенную пластичность и вязкость. Нередко использование ТМО позволяет получить комплекс механических свойств, который не может быть достигнут способами обычной термической обработки и традиционного легирования. Изменяя условия деформирования при ТМО, можно регулировать плотность и характер распределения дефектов кристаллического строения, что позволяет управлять структурой и свойствами стали в широких пределах. Именно эти причины и явились основанием столь быстрого развития и заинтересованности, производителей металлопродукции процессом ТМО. Необходимо отметить перспективность развития процесса ТМО при производстве катанки. Это обусловлено особенностями производства и геометрическими размерами (высокие скорости деформации и особо малое сечение в отличие от других видов металлопродукции получаемых путем горячей прокатки).  Дело в том, что только при прокатке катанки для большого марочного сортамента возможно осуществление и управление процессами горячего наклепа и рекристаллизации, что из-за отсутствия высоких скоростей деформации при производстве других видов проката неосуществимо в линии прокатки, либо возможно при наложении определенных ограничений (ограниченный марочный сортамент,как правило, стали аустенитного класса или низкие температуры прокатки). Это позволяет управлять прочностными свойствами горячего проката, а высокая степень деформации в совокупности с химсоставом и термообработкой пластическими. К особенностям прокатки катанки можно отнести еще один очень важный с позиций термомеханической обработки фактор — время между деформациями может достигать очень малых значений, в особенности в последних клетях, вплоть до 0,0005 с. Для сохранения структуры, полученной в процессе ТМО, большое значение имеет способ осуществления охлаждения после прокатки. При этом возникают две задачи: транспортирование проката к охлаждающему устройству и охлаждение металла по всему сечению для обеспечения равномерности структуры, а, следовательно, и свойств по сечению готового проката. Небольшое поперечное сечение катанки (диаметр до 8 мм) позволит нам рассматривать его как термически тонкое тело.

сравнительный анализ прочностных свойств

Таким образом, получив необходимую структуру на прокатном стане, мы можем ее зафиксировать во всем поперечном сечении и по всей длине, что улучшает однородность свойств и качество горячего проката. При необхо димости, изменяя интенсивность охлаждения после прокатки, можно также добиться различной структуры по слоям поперечного сечения и получить определенные свойства. Так как скорость отвода тепла в большем сечении из внутренних слоев ограничена, то сохранить преимущества наведенной структуры в процессе прокатки проблематично, а иногда и вовсе невозможно. При проведении эксперимента на прокатном стане наиболее важным моментом является учет наиболее влияющих на структуру факторов. Для этого необходимо осуществить математическое моделирование процесса прокатки, позволяющее определять значения влияющих на структуру параметров. Для последующей оценки их влияния на структуру могут быть использованы такие уже известные данные как:
- влияние температуры и выдержки в печи на рост зерна в заготовке;
- влияние величины зерна и температуры металла на превращения из аустенита;
- изменение структуры горячедеформированного аустенита при последеформационной выдержке;
- структурообразование при горячей
прокатке.

 

поперечное сечение
Для определения влияния параметров прокатки на структуру горячедеформированного металла необходимо создание термокинетической модели проволочного стана, на котором проводится эксперимент. На основании чего, исходя из скорости конца прокатки и промежуточных температур в линии стана, определяются значения: скорости деформации; температуры деформации; время между деформациями. При осуществлении процесса контролируемой прокатки температурный режим является одним из наиболее важных факторов в целенаправленном воздействии на структуру и конечные свойства в производстве катанки. Существует несколько путей непосредственного регулирования температуры раската в процессе прокатки: изменение температуры нагрева, регулирование скоростью прокатки, межклетевое охлаждение и нагрев раската. Чаще всего для воздействия на температуру раската во время прокатки используют два первых рычага воздействия. Для применения межклетевого охлаждения и нагрева необходима установка
дополнительного оборудования. Помимо этого требуется предварительная оценка возможностей охлаждения (при скоростях прокатки выше 30 м/с и межклетевом расстоянии не более 1 м — время для обеспечения необходимого теплосъема ограничено). Также большой задачей является знание влияния температурных полей раската в процессе прокатки для определенного марочного сортамента на структуру металла, в частности
на величину зерна. При использовании управления над температурой прокатки необходимо учитывать, что диапазон возможного регулирования имеет определенные ограничения. От теплового режима зависят энергосиловые параметры прокатного стана, усилия, действующие на валки (шайбы) и другие детали рабочих клетей, точность размеров профиля, форма и качество поверхности готового проката, стойкость прокатных валков, стабильность всего технологического процесса. При этом он непосредственно связан с режимами обжатий, скоростей и натяжений. На большинстве прокатных станах не производится непосредственное измерение температуры промежуточного раската во всей длине стана. Это связано как с дороговизной установки, так и условиями эксплуатации приборов, что зачастую не позволяет точно определить температуру металла, может приводить к поломке измерительной техники при аварийном отклонении металла от линии прокатки. Также при использовании междеформационного охлаждения даже определение температуры поверхности раската не дает точную картину о среднемассовой температуре металла, которая, в свою очередь, является наиболее значащей для оценки вышеуказанных параметров. Температура при прокатке металла распределена по сечению не равномерно, а так как непосредственным измерением это распределение определить не имеется возможности, то целесообразно прибегать к расчету тепловых характеристик. Тепловой режим рассчитывается с учетом теплового баланса, зависящего от всех видов теплообмена, имеющих место при горячей прокатке: потеря тепла теплопроводностью при контакте с шайбами и водяным охлаждением, конвекцией и излучением. Наибольшей проблемой определения теплопереноса при прокатке является установление закономерностей изменения температур в любой точке раската в течение времени от нагрева до получения готовой катанки. Изменение температуры раската во время прокатки связано с протеканием всех видов тепловых процессов: теплопроводностью, конвекцией и излучением. При этом каждый из видов теплопереноса вносит свой вклад, который не всегда удается точно установить. Деформация металла путем прокатки с позиции теплопереноса состоит из большого количества различных этапов (циклов). На каждом таком этапе действуют определенные процессы со свойственными только для данного участка условиями.  Результирующий эффект сложного теплопереноса зависит не только от интенсивности конкретных видов переноса, но и от особенностей их взаимодействия (последовательного или параллельного, стационарного или нестационарного). В отличиe от стационарного режима, при котором температурное поле не изменяется во времени, тепловой процесспрокатки характеризуется как нестационарный. При этом температурное поле раската является функцией времени. Нестационарный процесс связан с изменением энтальпии во времени. При этом интенсивность отвода теплоты непостоянна во времени.  Решить задачу нестационарной теплопроводности — это значит найти зависимости изменения температуры и количества переданной теплоты во времени для
любой точки тела. Каждый из процессов нестационарного теплообмена описывается системой дифференциальных уравнений. Однако данные уравнения описывают бесчисленное множество процессов теплоотдачи, выведенные из рассмотрения элементарного участка в физическом теле. Чтобы решить конкретную задачу, связанную с изменением температуры металла при прокатке, необходимо на каждом этапе рассмотреть протекающие тепловые и дать полное их математическое описание всех частных особенностей, свойственных для данного случая. Для этого необходимо решать систему дифференциальных уравнений при определении следующих краевых условий:
- Геометрические условия, характеризующие форму и размеры раската.
- Физические условия, характеризующие физические свойства среды и раската.
- Граничные условия, характеризующие особенности протекания процесса
на границах тела.
- Временные условия, характеризующие особенности протекания процесса
во времени.

Структура катанки

Решение данной системы уравнений позволит получить описание поля температур раската на любом участке прокатного стана в любой момент времени. Данная задача определения температурных полей по сечению раската в любой момент прокатки была решена для мелкосортнопроволочного стана 300 No3 ОАО «ММК». В качестве примера
приведена диаграмма на рисунке 1 распределения температуры по сечению
промежуточного раската. Использование результатов данной модели позволило оценить существующий температурно-деформационный режим
прокатки, а путем изменения основных факторов прокатки — прогнозировать и получать необходимый режим с позиции формирования необходимой структуры. С целью получения нового уровня свойств на катанке предназначенной для армирования, на ОАО «ММК» на стане 250#2 были проведены исследования с использованием температурно деформационной модели и вновь установленной установки водяного охлаждения. Установка в 2004 году новой линии водяного охлаждения на стане 250#2 (производства НПП «Инжмет») позволила провести экспериментальные исследования с целью получения термомеханически упрочненной арматуры малых диаметров. Получение термомеханически упрочненной арматуры на стане 250No2 заключалась в проведении процесса закалки поверхностного слоя катанки в линии водяного охлаждения, расположенной после чистовой клети No16 в потоке прокатного стана. Далее прокат укладывается моталкой в виде витков на сетчатый транспортер, после чего собирается на виткосборнике в бунты массой до 300 кг. Охлаждение осуществляется с помощью форсунки высокого давления и в последовательно расположенных трубках, на входе и выходе которых охлаждение катанки прерывается отсечными устрой ствами. Длина активной зоны охлаждения зависит от диаметра прокатываемой катанки и может составлять ≈ 7,2 м и ≈9,7 м.
Термомеханическое упрочнение катанки можно условно разделить на три этапа. На первом этапе катанка, выходящая из чистовой клети No16, попадает в линию термоупрочнения, где подвергается интенсивному охлаждению водой. Данный процесс должен обеспечивать охлаждение поверхности катанки со скоростью, превышающей критическую скорость охлаждения, необходимую для получения в поверхностном слое катанки структуры мартенсита.  Однако при этом технология процесса термоупрочнения должна обеспечивать такую температуру в центральных слоях катанки, при которой сохраняется аустенитная структура во время охлаждения. Этот процесс можно выделить во второй этап, который позволит при дальнейшем ее охлаждении со скоростью меньшей критической скорости получить в сердцевине катанки феррито-перлитную структуру, что обеспечит высокую пластичность полученной арматуры (рис. 2). На третьем этапе высокая температура центральных слоев катанки после окончания операции интенсивного охлаждения будет способствовать протеканию процесса самоотпуска закаленного поверхностного слоя. Данный процесс, в свою очередь, также позволяет повысить пластичность поверхностного слоя при сохранении его высокой прочности
Металл, расположенный между поверхностным и центральным слоем, имеет промежуточную скорость охлаждения, которая приводит к получению слоя с бейнитной структурой. В результате такого охлаждения получается, что катанка в поперечном сечении представляет собой две зоны в виде кольца: с мартенситной и бейнитной структурой и феррито-перлитной в центральной
части. В результате опытных прокаток на стане 250#2 была получена катанка с указанной структурой (рис. 3).
Исследование структуры шлифов термомеханически упрочненной катанки
показало у полученного проката, как правило, наличие одного или нескольких подкаленных слоев серповидной формы. Это, по видимому, связано с тем, что охлаждение производится только одной форсункой в один цикл охлаждения. В таких условиях при возникновении ситуации «случайного» омывания какой-то одной области проката в единственной камере охлаждения в дальнейшем отсутствует возможность проведения еще нескольких циклов охлаждения, которые позволили бы произвести более равномерное охлаждение катанки по сечению. Дальнейшее охлаждение катанки на сетчатом транспортере без осуществления направленной продувки воздухом также приводит к неравномерному температурному полю как по сечению, так и по длине бунта катанки. Также из опыта проведенных
прокаток было выявлено изменение температуры катанки после водяного охлаждения по длине бунта (изменение температуры по одному бунту
∆Т=30—50 °С). Так как время и условия охлаждения по всей длине бунта одинаково, был сделан вывод, что причиной данной разницы температур является неравномерность нагрева по длине заготовок в нагревательной печи прокатного стана.

Взаимосвязь пластических и прочностных свойств
Измерение температуры заготовки на выходе из печи и после черновой группы (изменение температуры составляло ∆Т=50—80 °С) впоследствии подтвердили это предположение. Перичисленные выше факторы в итоге приводят к большой неравномерности структурных составляющих по длине проката, что напрямую обуславливает значительный разброс (до 50—80 Н/мм2) механических свойств в пределах партии. Такая структура в катанке из рядовых низкоуглеродистых марок стали, позволяет получить уникальный комплекс механических свойств: высокий предел текучести при хорошей пластичности, что не всегда можно получить даже на катанке из некоторых низколегированных марок стали при стандартной прокатке и охлаждении на воздухе (рис. 4). Получение вышеуказанной катанки требует точного соблюдения технологии термоупрочнения. Настройка линии водяного охлаждения зависит от множества факторов: марки стали, необходимых механических свойств, диаметра катанки, состава оборудования линии охлаждения, настройки форсунки высокого давления, скорости прокатки, расхода и давления воды (рис. 5).
Для определения технологических параметров в зависимости от перечисленных факторов были проведены экспериментальные исследования с измерением температуры самоотпуска. От полученных во время экспериментальных прокаток бунтов катанки отбирались пробы для механических испытаний и металлографического анализа полученной микроструктуры.  Полученные результаты показывают, что существует достаточно большой диапазон изменения механических свойств. При этом наблюдается такая же тенденция как при повышении содержания углерода в углеродистых марках стали: при повышении прочностных свойств — уменьшаются пластические (рис. 5).
Исходя из марочного сортамента, уровня механических свойств и номинального диаметра, возможно получение оптимального технологического режима, удовлетворяющего запросы потребителей. Одной из наиболее перспективной областью применения термомеханически
упрочненной арматуры малых диаметров является использование ее для
связки арматурного каркаса в высокопрочных железобетонных плитах. Областью применения данной арматуры могут в перспективе быть и другие различные ж/б конструкции, фундаменты и т.д. На сегодняшний день это может обеспечить совершенствование нормативно-технической документации (ГОСТ, ТУ и т.д.) и исследование возможностей использования этого нового вида продукции. Проведенные исследования позволили определить основные параметры процесса термомеханического упрочнения катанки малых диаметров. Впоследствии при пуске на ОАО «ММК» стана 170 после адаптации полученных результатов к условиям прокатки на новом стане позволит освоить данный сортамент при массовом производстве.
ВЫВОДЫ
- Рассмотрены процессы, происходящие при деформации металла в горячем состоянии. Определены факторы, наиболее влияющие на формирование структуры металла после деформации.
- Показана перспективность развития процесса ТМО при производстве катанки с учетом ее геометрических размеров и особенностей производства: особо малое сечение и высокие скорости деформации в отличие от других видов металлопродукции получаемых путем горячей прокатки.
- Показаны результаты использования такого инструмента, как моделирование температуры с целью получения необходимых механических свойств катанки при горячей прокатке с учетом существующих технологических возможностей стана, а также с точки зрения влияния горячей пластической деформации и химического состава на структуру.
- Приведены результаты применения использования термомеханической обработки при прокатке на структуре готовой катанки.


Презентация

Контакты

 

 

Контакты

НАШІ КОНТАКТИ:

[email protected]

[email protected]

м. Дніпро

тел. +38 (056) 794-36-74, +38 (056) 794-36-75

моб. +38 (050) 320 69 72

ISSN 20760507

Керівник проекту - Гриньов Володимир Анатолійович

Партнеры