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Abstract 
When the local prediction model of chaos traffic sequence is at high order, its normal 
equations usually produce ill-conditioned phenomenon which reduces performance of the 
model and even cause serious distortion, Combined with phase space reconstruction theory, 
this paper aims to propose a high-order local prediction model to eliminate ill-conditioning 
and reduce calculation workload based on orthogonal polynomials, and solves the conflict 
between prediction accuracy and computation complexity to a certain extent, the usefulness 
of robustness to the number of neighbor points in phase space. is also considered. Chaos 
characteristics of the time series from actual network traffic were analyzed by Lyapunov 
exponent. On this basis, the evolution trend of the time series was predicted by local 
prediction model, the prediction results of new model and traditional model are also 
compared, and the effectiveness of new model is supported by these results. 
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1. Introduction 
Many empirical studies confirmed that 

traffic in Internet which is a complex system has 
abundant chaos behavior characteristics [1-5]. 
Therefore, prediction method based on chaos 
theory is more suitable to study problems 
concerning network traffic prediction [6-11]. 

The research on forecasting method of 
chaotic time series is the important part of the 
nonlinear chaotic dynamic systems. In this field, 
many prediction algorithms such as local 
prediction model based on phase space 
reconstruction can be found in literature [10-15]. 
Among them, local prediction model attracts 
increasing attentions for its good approximation 
function, which often uses polynomial to 
construct the approximation function [10-15]. 
Generally speaking, high-order model has better 
prediction effect compared to low-order one. 
However, high-order model has heavy calculation 
workload and its normal equations are often 
morbid, with poor robustness. The polynomial 
orders that could be approximated are strictly 
limited by round-off error. It will generate 
unstable numbers to any algorithms and often 
produce meaningless results [14-16]. 

According to the problems of traditional 
local prediction model, the aim of this paper is to 
provide a high-order local model for chaos 
network traffic prediction based on orthogonal 
polynomials. Due to the good mathematical 
characteristics of orthogonal polynomials, this 
model could improve prediction accuracy, and 
reduce computation complexity, eliminate ill-
conditioning of normal equations, therefore it get 
better prediction results than traditional 
methods,and it  is robust to the number of 
neighbor points in phase space. 

2. Theory of phase space reconstruction 
To establish a prediction model of chaos 

time sequence, phase space reconstruction of the 
time sequence is the primary task, which is to 
“restore” the geometric structure of the phase 

space of complex system. Its theoretical basis is 
the Takens theorem. 

Taken theorem [17]: Set a time sequence
1,2, ,{ ( )} = k nx k . Given delay time τ  and embedding 

spatial dimension m, some smooth mapping 
: →m mF R R  could be found on the attractor, 

which meets ( 1) [ ( )]+ =Y t F Y t , where  Y( )t  is a m-
dimensional vector. 
 Y( ) ( ( ), ( ), , ( ( 1) ),τ τ= − − −t x t x t x t m   

1, 2, , ( 1)τ= − −t n m  
The Takens theorem reveals that orbit in 

the reconstructed phase space is equivalent to the 
original chaos system under diffeomorphism 
significance. Hence, the reconstructed phase space 
could maintain same geometric characteristics and 
information with the original dynamic system. 
This enables us not only to comprehend 
correlation of variables of the chaos system, but 
also study the dynamic behaviors of the system 
based on partial information.   

3. Establishment of orthogonal local 
prediction model 

Here, the local prediction model of chaos 
time sequence was established based on theory of 
phase space reconstruction. 

Suppose 1,2, ,{ ( )} = k nx k  is a known time 
sequence. Its future evolution ( 1), ( 2), + + x n x n  
is predicted with the established local model. 

Firstly, make phase space reconstruction 
of this time sequence. According to the Takens 
theorem, ( 1)τ= − −N n m   phase points of this time 
sequence in the m-dimensional reconstructed 
phase space could be gained by choosing 
appropriate delay time τ  and embedding 
dimension of phase space (m):  

(1) ( (1), (1 ), , (1 ( 1) )τ τ= + + −Y x x x m , 
(2) ( (2), (2 ), , (2 ( 1) )τ τ= + + −Y x x x m , …,. 
( ) ( ( ), ( ), , ( )τ= + Y N x N x N x n  

Later, find out the mapping F in the 
Takens theorem. Point ( 1)+Y N in the 
reconstructed phase space could be predicted from

( 1) [ ( )]+ =Y N F Y N  by using historical data. In this 
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way, the predicted value of time sequence ( 1)+x n  
could be gained, because it is the last component 
of phase point ( 1)+Y N . Repeat and iterate 
continuously, and ( 1), ( 2), + + x n x n  could be 
predicted. This is the ideal of modeling based on 
phase space reconstruction. 

Therefore, the key of time sequence 
prediction is to get a good approximation of 
mapping F. Since chaos behavior only occurs 
under nonlinearity of F, it is necessary to find a 
nonlinear expression of F. High-order polynomial 
fitting is the first choice, because any continuous 
function could be approximated by a polynomial 
within any small neighborhood. The high-order 
local prediction model could be expressed as:                        

2
0 1 2( 1) ( ) ( ) ( )+ = + + + + q

qY N b b Y N b Y N b Y N     (1) 
Some neighbor points to the prediction 

center ( )Y N  were selected as the reference points 
in order to determine model coefficients 0 1, , , qb b b
. Then, the local model for predicting traffic 
sequence was acquired. 

Let 1 2( ), ( ), , ( ) MY k Y k Y k  represent M 
neighbor points to the prediction center ( )Y N . It 
can be known from equation (1) that all of these 
neighbor points meet: 

2
0 1 2( 1) ( ) ( ) ( )+ = + + + + q

i i i q iY k b b Y k b Y k b Y k ,
1, 2, ,= i M  

Our goal is to get the predicted value of 
the last component of phase point ( 1)+Y N . 
Therefore, we only have to consider the last 
component of all phase points when calculating 
coefficients. They shall be: 

2
0 1 2( 1) ( ) ( ) ( )+ = + + + + q

i i i q ix k b b x k b x k b x k ,    
1, 2, ,= i M                                                      (2) 

Least square method is the common 
method used to calculate coefficients 0 1, , , qb b b . It 
chooses an approximation polynomial according 
to the principle of minimum error to get the 
minimum sum of square error and calculate model 

coefficients. This is an effective approximation 
method about mapping F, but has obvious 
shortcomings. Under high order q, the normal 
equations of least square method are often morbid 
and have high computation complexity. The 
calculated coefficients 0 1, , , qb b b  may have some 
correlation, which will influence prediction 
performance of the model. To eliminate these 
phenomena, we make full use of good 
mathematical characteristics of orthogonal 
polynomials to establish the high-order local 
prediction model of chaos traffic time sequence. 
For the given time sequence{ }( ), 1, 2,= x k k , 
polynomial sequence { }( ), 1, 2, ,= mU x m q  is 
chosen, where ( )mU x  is the m-order polynomial 
about x. The inner product is defined and shall 
meet: 

[ ]
1

, , 0
, ( ) ( ) [ ( )]

0,    =

= ≥= = 
≠

∑
M

mj mj
m j m j

i

A m j A
U U w k U x k U x k

m j
 

Under this circumstance, 
{ }( ), 1, 2, ,= mU x m q  is obviously the orthogonal 
polynomial sequence of ( )w k  weighted time 
sequence{ }( ), 1, 2,= x k k  . 
Model (2) could be rewritten as: 

[ ] [ ] [ ]0 1 1 2 2( 1) ( ) ( ) ( )β β β β+ = + + + +i i i q q ix k U x k U x k U x k   
, 1, 2, ,= i M                                                    (3) 

Comparison between model (3) and (2) 
reveals that ib  and β

i
 ( 1, 2, ,= i q  ) have a 

simple function relationship. Therefore, 
0 1, , , qb b b  could be calculated if 0 1, , ,β β β q  is 

known. 
View 

[ ] [ ] [ ]0 1 1 2 2( 1) ( ) ( ) ( )β β β β+ = + + + +i i i q q ix k U x k U x k U x k
 as the multivariate function about 0 1, , ,β β β q  
and calculate them by weighted least square 
method. The square sum of model prediction error 
is:

[ ] [ ] [ ]{ }2

0 1 0 1 1 2 2
1

( , , , ) ( ) ( 1) ( ) ( ) ( )β β β β β β β
=

= + − − − − −∑ 
M

q i i i i q q i
i

e w k x k U x k U x k U x k
 

[ ]
2

0 1
1 0

( , , , ) ( ) ( 1) ( )β β β β
= =

 
= + − 

 
∑ ∑

qM

q i i j j i
i j

e w k x k U x k   

 
Where ( )iw k  is the weight of neighboring 

phase point ( )iY k . According to the principle of 
least square method, coefficients 0 1, , ,β β β q  
shall be able to get minimum 0 1( , , , )β β β qe . 
Hence, calculate partial derivatives about 

0 1, , ,β β β q  and make them all equal to zero: 

[ ]
1 0

2 ( ) ( 1) ( ) [ ( )] 0β
= =

 ∂
= + − = 

∂  
∑ ∑

qM

i i m m i j i
i mj

e w k x k U x k U x k
b

 ， 0,1, ,= j q  
Then, 

[ ]
0 1 1

( ) ( ) [ ( )] ( ) ( 1) [ ( )]β
= = =

= +∑ ∑ ∑
q M M

m i m i j i i i j i
m i i

w k U x k U x k w k x k U x k

， 0,1, ,= j q  
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This is the normal equations of 1+q

unknowns and 1+q  equations. According to the 
definition of inner product, normal equations 
could be simplified as: 

0
, ,β

=

=∑
q

m m j j
m

U U x U  

Let  

0 0 0 1 0

1 0 1 1 1

0 1

,     ,        ,

,     ,        ,

          

,     ,        ,

 
 
 

=  
 
 
  





  



p

p

p p p p

U U U U U U

U U U U U U
U

U U U U U U

，

0

1

,

,
  

,

 
 
 

=  
 
 
 



p

x U

x U
C

x U

 ， 0 1, ,β β β β =  
T

q  

Then, get the matrix form of normal 
equations:  
β =U C                                                           (4) 

Under reversible U, the unique solution 
1

0 1, ,β β β β − = = 
T

q U C to the equations could 
be gained. Then, model coefficients 0 1, , , qb b b  
could be calculated. 

If ( )mU x  is the common polynomial, 
elements in matrix U may not be zero. At this 
moment, the normal equations are morbid and 
have heavy calculation workload. Since ( )mU x  is 
an orthogonal polynomial, it can be known from 
orthogonal nature that elements in the matrix U 
except for diagonal are all zero, thus making U a 
diagonal matrix. Therefore, the equations (4) will 
be simplified as: 

0 0 00

1 1 11

,       0       0 ,

    0      ,    0 ,
             

   0         0    , ,

β
β

β

    
    
     =    
    
        





   

 qq q q

U U x U

U U x U

U U x U

 

 
The calculation workload is reduced 

significantly and ill-conditioning of the normal 
equations as well as coefficient correlation is 
eliminated. 

However, there still have two problems 
that have to be solved: how to construct weighted 
orthogonal polynomial series 
{ }( ), 1, 2, ,= m iU x k m q  and how to determine 
weight function ( )iw k  of neighbor points ( )iY k . 

With respect to construction of 
polynomial sequence{ }( ), 1, 2, ,= m iU x k m q , based 
on the idea of Schmidt orthogonalization, let  

[ ]0 ( ) 1=iU x k ， 

[ ] ( ) [ ]1 1 0( ) ( ) ( )ρ= −i i iU x k x k U x k ， 
[ ] [ ] [ ] [ ]1 1 1( ) ( ) ( ) ( )ρ λ+ + −= − −n i i n n i k n iU x k x k U x k U x k  

Where    

[ ]

[ ]

2

1
1

2

1

( ) ( ) ( )( ) ,
, ( ) ( )

ρ =
+

=

= =
∑

∑

M

k i n i
i n n i

n M
n n

k n i
i

w x x k U x kx k U U
U U w x U x k

 

[ ]

[ ]

2

1

21 1
1

1

( ) ( ),
, ( ) ( )

λ =

− −
−

=

= =
∑

∑

M

k n i
n n i

n M
n n

k n i
i

w x U x kU U
U U w x U x k

 

Therefore, it is easy to confirm that the 
gained { }( ), 1, 2, ,= m iU x k m q  meets orthogonality 
conditions. 

Finally, weights ( )iw k  of neighboring 
phase points ( )iY k  are determined. Prediction 
accuracy of model depends more on neighbor 
points closer to the central point, because they 
carry more information about prediction center. 
The model shall consider this important factor. 
Hence, weight function of neighbor points ( )iY k  
shall be constructed based on distance: 

1 1

1
( )

=

= ∑i i

M
R R

i
i

w k e e  

Where, iR  denotes distance between ( )Y N
and ( )iY k .This weight function depicts different 
effects of different neighbor points on dynamic 
behaviors at the prediction center. Neighbor points 
closer to the prediction center influence the 
prediction center more significantly. 
Now, the high-order local prediction model of 
network traffic sequence is established. 

4. Numerical simulation 
In this part, chaos behavior characteristics 

of actual traffic sequence is analyzed. On this 
basis, validity of the established model is verified 
through numerical simulation. 

Numerical simulation data comes from 
visit traffic of INNP server in the USENET 
system from January 1st, 2006 to March 31st. (the 
URL is http://newsfeed.ntcu.net/~news/2006/). 

Sampling time granularity is hour and 24h per 
day. A total of traffic records of 2,160h were 
collected. We established the high-order 
orthogonal local model with the first 2,135 data 
and rest 25 data were used to testing prediction 
effect of the model. The time sequence composed 
by the first 2,135 data is { }( ), 1, 2, , 2135= x t t  
(Fig.1). Now, let’s discuss the chaos behavior 
characteristics of this sequence. 

Chaos appears an irregular movement and 
is a random-like behavior that doesn’t need to add 
any random factors in the determinant complex 
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system. Chaos degree of a system can be depicted 
by the maximum Lyapunov exponent λ  which is a 
quantity that characterizes the rate of separation of 
infinitesimally close trajectories for a dynamical 
system. Quantitatively, two trajectories in phase 
space with initial separation (0)d  diverge at a rate 
given by ( ) (0)λ= td t e d . 

A positive λ  is taken as an indication that 
the time series is chaotic, and the larger the λ  is, 
the higher the chaos degree will be [14-5]. 

In this paper, whether this traffic sequence 
has chaos characteristics was determined from 
qualitative analysis based on phase diagram of 
attractor and images of Poincare section [14-16]. 
Attractor is a kind of abstract mathematical 
model. It is the set of infinite points in phase 
space. Here, we displayed attractors of actual 
traffic sequence in a three-dimensional phase 
diagram (Fig.2). Attractor orbits of flow sequence 
gather together in the three-dimensional 
reconstructed phase space and has evident 
characteristics of rough and irregular geometric 
structure as well as concentration. This is the 
intuitive representation that network has chaos 
behavior characteristics. 

The Poincare section of network traffic on 
two-dimensional plane is shown in Fig.3. Poincare 
section has fractal geometric structure, that is, 
similar overall and partial geometric structure. 
This confirms that this traffic sequence may have 
chaos characteristics from another perspective. 
In the following text, Lyapunov exponent  λ  of 
the traffic sequence is calculated. Hence, phase 
space of the sequence is reconstructed firstly. It 
can be seen from the Taken theorem that the phase 
space reconstruction needs two important 
parameters: embedding dimension m and delay 
timeτ . Here, m could be determined through GP 
algorithm [18]. As shown in Fig.4, the horizontal 
axis is embedding dimension and the vertical axis 
is correlation dimension D. Value of m when D 
reaches the stable state is the desired embedding 
dimension. We calculated m=8. Parameterτ is 
determined by using the mutual information 
method [19]. In Fig.5, the horizontal axis is delay 
time and the vertical axis is mutual information, 
when the mutual information reaches the 
minimum for the first time is the desired delay 
timeτ . We calculatedτ =14. 

Next, the maximal Lyapunov exponent λ
of this time sequence could be calculated by using 
small data sets [20]. The variation curve of 
separation velocity of two orbits in phase space 
against time is shown in Fig.6. Slope of the 
straight line is λ  of this time sequence. Here,λ
=0.0387 is got and larger than zero, which agrees 

with previous judgment that the traffic sequence 
has chaos characteristics. Therefore, the 
established model could be used to predict its 
future values. Based on Lyapunov exponent, the 
upper limit of predictable length 1/ λ= =T 25.8 
can be calculated [14-15]. This means that 
evolution of this traffic sequence in the coming 
25h, that is subsequent 25 points of this traffic 
sequence, could be predicted. 

A total of 5 neighboring phase points in 
the reconstructed phase space which are the 
closest to the prediction center were chosen as 
fitting reference points. The corresponding 
orthogonal local model when q=2 and 3 was 
established. To compare prediction effect, the 
traffic sequence was also predicted by using the 
traditional local linear model. 

To evaluate prediction effect of the model, 
relative error of prediction points was defined: 

€( ) ( )
( )
−

=
x t x t

E
x t

 

The regularization mean square error 
(RMSE) defined to describe the overall prediction 
performance of the model is: 

[ ]2

1

2

1

€( ) ( )

( ) ( )

=

=

−
=

 − 

∑

∑

N

t

N

t

x t x t
RMSE

x t x t
 

Where ( )x t  and €( )x t  are mean value and 
predicted value of the sequence. 

Prediction effect is presented in Fig.7. 
Obviously, prediction results of models are close 
to the actual value of traffic. Proportions of 
relative error of models in prediction points within 
a certain interval and mean prediction relative 
error of the models are listed in Table 1. 
Compared to traditional model, the orthogonal 
local model shows higher proportion of prediction 
points whose relative error falls within the interval 
of small value. This implies that model 
improvement indeed increases prediction 
performance of the model.  

Mean prediction square errors of models 
are exhibited in Table 2. Compared to traditional 
model, second-order and third-order orthogonal 
models show significantly higher prediction 
accuracy. Although the third-order orthogonal 
model has little higher prediction accuracy, no 
essential difference of prediction effect has been 
observed between them. This indicates that we 
could achieve good approximation effect of traffic 
sequence by using the third-order orthogonal local 
model. 
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Figure 1.  Network traffic sequence 
 

 
 
Figure 2.  Phase diagram of traffic sequence attractor 
in three-dimensional reconstructed space 
 
 

 
 
Figure 3.  Poincaré section of network traffic 
 

 
 
Figure 4.  Determining embedding dimension of the 
reconstructed phase space 
 

 
 
Figure 5.  Determining delay time through mutual 
information method 
 

 
Figure 6.  Calculate Lyapunove index of traffic 
sequence 
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Figure 7.  Prediction effect of models and comparison 
 
Table 1.  Relative error intervals of prediction models 
 
 
 
Error 
interval 

Prediction points in different error 
intervals 
Traditional 
model 

Second-
order 
orthogonal 
model 

Third-
order 
orthogona
l model 

<0.01 7 8 8 
[0.01,0.02) 10 9 11 
[0.02,0.03) 3 4 3 
[0.03,0.04) 2 2 2 
≥ 0.04 3 2 1 
Mean 
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0.02168 0.01749 0.01648 
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Table 2.  RMSE of prediction models 
 

Mo
del  

Traditiona
l model 

Second-order 
orthogonal 
model 

Third-order 
orthogonal 
model 

RM
SE 0.115054 0.096807 0.082299 

 
Robustness of prediction models is 

discussed in the following text based on amount 
of neighbor points (M), an important parameter in 
modeling. For a robust local model, its prediction 
performance shall be not very sensitive to M. 
Fig.8 shows variation of RMSE of prediction 
models when M increases from 30 to 55 at a 
growth rate of 5. When M decreases, RMSE of all 
prediction models increases. This is because when 
neighbor points reduce, information of dynamic 
behaviors at prediction center contained in them 
attenuates. Such change is more obvious in 
traditional model than rest two orthogonal models. 
In other words, as M decreases, RMSE of the 
traditional model increases more quickly. When 
M decreases to 40, its RMSE has increased 
greatly. On the contrary, RMSE of the second-
order and third-order orthogonal models increases 
slowly. Hence, we can draw to the conclusion that 
orthogonal model has higher robustness compared 
to the traditional model. This also inspires us that 
model prediction accuracy shall be improved by 
reducing prediction error according to the basic 
modeling principle and method rather than simply 
increasing neighbor points. 
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Figure 8.  RMSE value for different number of 
neighbor points M 
 

5. Conclusions 
In this paper, a high-order local prediction 

model of chaos network traffic based on 
orthogonal polynomials is proposed. It makes full 
use of good mathematical characteristics of 

orthogonal polynomials and could overcome 
shortages of traditional local prediction model, 
such as heavy computation workload, ill-
conditioning of normal equations, etc. It also 
improves prediction accuracy and robustness 
while reducing computation complexity, solving 
the conflict between accuracy and calculation 
complexity to a certain extent. It could provide 
high-accuracy simple prediction of chaos network 
traffic. 
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