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Abstract

The problem of increase of accuracy of Kantorovich-Vlasov’s variational method is
considered. It is proposed to simplify the method of applying a number of members of the
method under various boundary conditions. The solutions of isotropic bending problems of
thin rectangular plates with hinged support and rigid fixing, wherein there is a significant
increase in accuracy as compared with the case of using one member of number, are
presented. The calculation results are obtained by numerically-analytical variant of the
method of boundary elements in the environment of MATLAB.
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Solution of the problems of bending
elements of engineering structures in the form of
rectangular plates and plate systems (in such fields
as aerospace, aircraft industry and instrumentation)
analytically have considerable mathematical
difficulties. The Kontorovich-Vlasov variational
method is one of these analytical methods. This
method, developed of the Fourier method of
variables separation, allows us to obtain an

approximate analytical solution of boundary value
problems for partial differential equations. For this
reason, the scope of its application is very
extensive and it is a powerful and effective tool for
solving complicated tasks of modern science. In
particular, deformable solid mechanics, structural
mechanics, dynamics and strength of machines,
etc. this method helped to obtain solutions of many
problems of statics, dynamics and stability of disc
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and shell structures. This method has been
criticized for the fact, that it is very difficult to take
into account two or more members of the desired
solution. The only exception is hinged support
facility. We propose to improve the accuracy of the
method by using multiple terms in the series at
different (not hinged) support conditions. We
introduce this proposal on the examples of solving
the bending of isotropic thin rectangular plates,
where the method of Kantorovich-Vlasov was used
for the first time.

The differential equation of bending of thin
discs is reduced to the form (equation of Jermain-
Lagrange) [1]

4 4 4
0 W()i’ Y) 59 WZ(X’3/)+8 W()i’Y) =q(x,y)/D. (1)
oy ox*oy ox
where w(X, y) — the deflection of the middle plane
of the plate;

q(x, y) - lateral load on the plate;

D =Eh®/12(1- %) -
rigidity;

E — modulus of elasticity of the 1st type;

h — the thickness of the plate;

4 — Poisson's ratio.

Kinematic and static parameters of
equation (1) are represented as functional series.
For example, deflection and bending moment take
the following form

cylindrical

4

w(x, y) =w1(y)><1(x)+W2<y)><2(x>+...=iwi(x, y)(2)
M, (X, y) = =D[W," ()X, (X) + s, (Y) X" (x) |-
~D[W" ()X, 00 + AW (1)X! (0] == S M, (1Y),
(3)

where X;(X), i =l - the given functions
system of the variable x;

W.(y), i=100 - the required functions system
of the variable y.

This view distinguishes between two areas
of the disc - cross coincide with the direction of the
axis Ox, and longitudinal, coinciding with the
direction of the axis Oy, (Figure 1). As a given
system of functions X, (X) it is convenient to take

the form of natural oscillations of the housing strut
with supports similar to the support conditions of
the longitudinal edges of the disc [1,2]. The
essence of the mathematical transformation of the
equation of bending of the disc in the Kantorovich-
Vlasov method is the substitution of the range (2)
into the equation (1), multiplying both parts by the
selected functions system X,(X) and integration

within the width of the disc from 0 to I;. A system
of linear differential equations for the unknown

functions is obtained W, (y) [1].

Figure 1. Computational scheme of the square block

iaikwklv (¥)- 22 bW (y) + icikwk (y)=0a(y)/D (4)
(i=12,.)

where coefficients are evaluated according to
formulas

I I
a, :.!kaidx; biklxk'xi'dx—g[xkxi' XX |6 )

6 = [ XX "dx: ,(y) =[x Y)X, ().
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By simply supported lTongitudinal edges of
the plates

X, (x) =sin|7|T—X (6)
1

and a common system differential linear

equations(4) disintegrates into separate equations

(owing to the function features(6))

W1IV (y)—ZI’lZ\Nl“ (y)+ 514W1(y) = ql(y)/ D;
W," (y) = 26W," () + W, (y) = 6,(y)/ D; -
W3IV (y)_2r32\N3” (Y)+ SgVVs(Y) = qg(y)/ D;

=B /A s =C 1 A; G(y) = [a06 X, 000k A

A= .1[ XZ(x)dx; B, = j X" (X)X, (x)dx; C, = j XM (X)X, (x)dx.

®)
Functions systemW,(y), W,(y),W,(y)
,... IS found as a solution of the corresponding

equations (7) with the support conditions on the
transverse edges of the plate. The essence of
suggestions of this work is to determine the system

functions W, (y) of the individual equations (7)

under the condition of leaning against longitudinal
edges different from joint ones.

In this case supplementary coefficients of
the joint system of equalizations (4) are not taken
into account and functions W, (y) will be defined
with some error.

Thus, in the method of Kantorovich-
Vlasov a rectangular plate is designed by two
beams. In the direction of axis of Ox a beam
allows to choose functions X, (x), in the direction

of axis of Oy - to find functions W, (y) with the

help of Cauchy solution bend of beam. Cauchy
solution for equations (7) is possible to present in a
matrix form (here and below the indexes of range
members are suppressed) [2, 3].

DW (y) Au | An | -As |-Au | | DW(0) Aul-9)
Do A Ap | Am |-A Do(0 Y As(y=9)
(y) 21 2 2 13 (0) +J v q(&)dée (9
M (y) “An | A | Az Ag M (0) 5 12(Y
Q ( y) -An Az | Az An DW (0) ~Au(y—=)
where W (y),@(y), M (y) 'Q(y) _ Square plate with the joint leaning on a

bending, turning angle, flexion moment and
transversal force of conditional beam, replacing a
plate in the direction of axis Oy.

Let us estimate an error of the offered
approach on concrete examples.

perimeter, loaded with evenly distributed load
g(x,y) =g =const and concentrated force of F
in a center. In this case I, =S, =iz . Fundamental

orthonormal functions and elements look like from
loading [3].

D,(y) =y chry; @y(y) =chry; @,(y) =shry; @,(y)=y shry;, o, =inx;

Xi(x) =sin(izx/1,); A, = D,(y) - (11— w)r ©,(»)12;

A, = A=) (») 12+ U+ )Py () [ (2r); Ay =D, () (2rA);

A, = (r@l(y)—®3(y))/(2r3A); Ay =7 (1+ﬂ)@3(y)/2_(1_/1)’”2@107)/2; ., (10
Ay =Dy (y)+ A= p)r ©,(¥) 12, Ay =D (y) 1 (24) + Dy(y) [ (2rA);

Ay =—(1-u)’r’AD,(y)/ 2; Ay, = A[(l—ﬂ)zrz@l(y) + (1—ﬂ)(3+ﬂ)rq>3(y)]/2:

Ay = Al (- ) r'dy (3) — (L= 1) B+ 1) Dy () |1 2;
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11

[r@,(y-d,). +2H(y-d,)-2®,(y-4d,). ]y, ()

Il
Cu

2r*A
[ro,(y-d,). +2H(y~d,)-2d,(y~4d,).]7, (o)

Iy
cK
+

+F 7 (o)

BZl -

[ro(y-d,), -®(y-d,),]r, (o)

2r*A
ré(y—de), —D(y—de), .

_a[re(y-d,), - Py (y-d,). ], (o)

l
c!l

B31:q

[(A-w)rd,(y-d,), +2u®,(y-d,), —2uH(y-d,)]y, (@)

h
-+ Fre (o)

[(A-)rd,(y-d,), +2ud,(y-d,), —2uH(y-d,)]7, (@)

@4(y_dF)+ .

2rA

Iy
CH

(10)

h
Cx

®) A-)rd(y—de), + A+ )P (y —dp ), ;

+Fye( or
5 _q[(3—u)@3(y—d;,)+—(1—u)r¢1(y—dn)+]7q(w) .
“a 2r -
~ [B-w)@,(y—d,), —U-wyrd(y—d,), |7, (@)

2r

+F e [®2(y_dF)+_(1_/’l)r®4(y_dF)+/2];

Vg (@) = j X (X)dx; yg (@) =sin(izce /1,);

displaced at the point d ;

H(y—d,6)— Heavyside’s unit function

@,(v—d,), —spline function of sight

D,(y-d,), ={

0,(y-d,)<0
®,(y-d,), (y-d,)=0

The required function W (y) from the

equation (9) is determined in such a way:

DW (y) = DW (0)- A () + DO(0)- A, () =M (0)- A, (1) -Q(0)- A +Buy) 13y

where initial parameters can be defined at the
decision of boundary problem for a beam on the
numeral-analytical method of border elements [2,

3](c,=0;¢c,=1;d =0;d =1;4=0,3; q=1
; F=1,d. =1/2;c. =1,/2; |, =l=a=1).

1 2 4
1 A ~Aw DA(1) -Bu(l)
2 |- Az . DO(0) | = By (1) . (12)
3 Az Az Q(l) Bai(1)
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_A31

Q(9)

Bau(l)

In the table 1 the results of calculations (2),
(3) are presented, where even terms are absent,
because they are practically equal to zero.

Table 1. The values of bendings and moments in the joint leaning plate

Numb | Terms of Loading Bending in the center of plate Flexion moments in the center of

er of | leaning w(l, /2,1/2) plate

the M, (1 /2,1/2)

row

terms

range

memb

rs

1 g:e J'oin; a(x,y)=q 41,093-10* ga*/ D 4,920-107 ga’

3 perimeter -0,505-107* -0,155-107

5 0,047-10™" 0,0312-10°*

7 -0,00778-10°* -0,0113-107°

9 0,00221-10™* 0,00531-107*

) 40,624-10™* 4,790-107°

1 The_ joint a(x, y)=Fx | 107, 665-10* Fa’/ D 21,756-10°F
leaning on ) -2

3 a perimeter xo(x—1,/2)x | 5962-10 6,901-10

5 xo(y—1/2) |1,290-10°* 4,138-102

7 0,470-10™* 2,956-107

9 0,221-10™* 2,299-107

) 115,609-10"* 38,049-107?

Inaccuracies at the action of the evenly
distributed load at bendings (exact data are taken
from [4, 5])

~ 40,624-40,6
' 40,6
at flexion moments
_4,79-4,79
? 4,79

At the action of the concentrated force in

the center of plate at bendings

= 115, 609 —116, 0 .100% = 0’34% (15)
116,0

-100% = 0,06% (13)

-100% = 0,0% (14)

In reference data [4, 5] the values of
flexion moments in the center of the plate (point of
application of the concentrated force F) are absent.
Evidently, that the results of method are practically
exact.

Square plate with rigid fixing along the
perimeter, loaded with evenly distributed load and
concentrated force in a center. In these terms

[s|>|r|, frequency of rigidly fixed beam should be

found searched from equation cos(w)-ch(w)=1.
The elements of equation (9) become [3].
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@,(y) = ch(ay)sin(By); @,(y)=ch(ay)cos(By); @,(y)=sh(ay)cos(By);

@,(y) = ch(ay)sin(By); a=(s*+r*)12; f=(s*-r*)I2;

Ay =D, (»)— (L= 1)r* @, (v) | (2ap); Ay, =(s* - ur*)®(v)] (2s%) +

(" + ur’ )@, (y) 1 (2as®); Ay =D, (») 2afA); A, =(a®,(y)~ fPy(y))] (2afs* A);

Ay = (8°+ ur® )@, (y) 1 (2a) = (s* — ur*)@,(y) 1 (28);

A, = Dy(y)+A-)r* @, (y) | af); Ay =(a®@(y)+ P, ()] (2apA);
Ay = Al ur'(2-u)-s* |®,(») (2p);
Ay = Al =" +2(L- @)% + 71" | (y) 1 (2Bs°) + A| 5" + 20— w)s’r” = 1°r* | @, (3) ] (2a5°);
Ay = A8 +20- @)s*r* + 1’1" | @, (y) [ (2B) - A s* + 21— w)s’r — 17 |@,(v) | (202);
{r*o,(y-d,), +2aB[H(y-d,)-®,(y-d,).]}7,()

I1
Cu

B11:q 4
205" A
v (v-d,), +20p[H(y-d) - ®,(y=d,).]}7, (@)[:
2058 A

+Fy. (@) a®1(y_dF)+_ﬁ@3(y_dF)+.

F 2085 A ’

_Je@0-d). - por-d)Jn @) [e®0-d) - pRG-d) @l 0O
2 =4 2a35° A q 20352 A

CD41(.)/_('11F)-¢-

+Fye (@) 20 A
o _ L2Hapr[0(=d) —H=d )+ ("~ )Py =d,) |, (@)},
31 20{,384
J2uapr[@,(v=d). —HG=d )]+ (" - )R (=) 7, @)
a 203"
TFy (@) (s* —ur®)a®,(y—d;), +(s* + ur®) po,(y —de), .

F 203s* ’
. {a[26° -W-wr]@(v=d,), + (20 + 1= w)r* @,(v=d,).}7, ()2
a = 2a,3s°
Aa[2p -t e r=d). + B[ 20" + L) [ (v =d,). |7, (@)]:
a 20,35

+Fye (@) @,(y—d;). (- )’ D, (y—d¢), | (2B) |;
X (x) =sin(ewx/1;)—sh(wx /1) —a, [cos(wx /1) —ch(ewx/1)];

a, = (sinw—shw)/ (cos w - chw); y,(w) = Jl' X (x)dx;

7e (@) =sin(wc, /1) —sh(wc, /1) —a, [cos(ewc, /1) —ch(wc, /1,)].
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A boundary p
beam becomes

roblem

of the rigidly fixed

(d,=0;d,

=l;c,=0;c =I;d. =1/2;

c.=1/2;4=03;q=1; F=1; |, =l=a=1)

1 2 3 4
1 A | —Au M (1) -Bu(l)
2 A | —Ass Q(l) ) By (1) _
3 |1 Ay | As M©O) | |Bal) (17)
4 -1 Ay | An Q(0) Ba(l)
In a table number 2 the results of leaning plate, here also the even terms of range are

calculations of row terms (2) , (3) for the rigidly

fixed plate are presented. As well as in a joint

Table 2. The values of bendings and moments in the rigidly fixed plate

equal to zero.

Number | Terms of | Loading Bendings in the center | Flexion moments

of the leaning of plate In the reference In the center of

range w(l, /2,1/2) cut set plate

;nember M, (,/2,0) M, (,/2,1/2)

1 Tough | g(x,y)=q 129,917-10° ga*/ D | -538,852-10* qa” | 245,606-10°* ga’
embeddin

3 gona ~ > ” 210
perimeter -3,386-10 42,306-10 -13,872-10

5 0,367-10°° -10,968-10™* 3,304-10

7 -0,078-10°° 4,325-10™ -1,298-10™

9 0,024-10°° -2,128-10™" 0,638-10™"

) 126,844-107° -505,318-10* 234,379-10™

1 Totéggd_ q(x,y)=Fx | 51,520-10* ¢qa’/D | -11,897-10° F | 19,212-10°*F
embeddin

3 gona ! xo(x—1,/2)x | 3,895-10”* -0,314-10°? 6,148-10

5 perimeter x5(y—=1/2) | 0,999-10™ -0,0096-107* 3,877-107°

7 0,391-10°* -0,000266-107 | 2,819-10°

9 0,191.10 -6,208-10°° 2,215-107°

> 56,966-10* ~12,221-10°? 34,272-10°

Unaccuracies of results at the action of A = 234,379-2310 100% 1. 46% (19)

evenly distributed load

o 231,0

at bendings At the action of the concentrated force in
L= w,mo% —0,67%, (18)  the center of plate
126,0 at bendings
at bending moments ~ 56,996-56,0 100% —1 78% 20)
J— 7 - - !
. 505,318-513,0 100% =1.50% , _ 56,0
513,0 at bending moments
© Metallurgical and Mining Industry, 2015, No. 4 301
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_12,221-12,57
? 12,57

As it was mentioned before, values of
moments in the center of plate in reference data [4,
5] are absent.

It ensues from presented, that exactness of
variation method of Kantorovich-Vlasov at the use
of a few row terms (2) substantially increases and
the results of calculations practically coincide with
the exact meaning. Taking into account that the
analytical decision of the Cauchy of differential
equalization problem in partials (for example, for a
rectangular plate this matrix equalization (9))
within the framework of algorithm of numeral-
analytical variant of method of border elements has
a considerably more wide use, than simply plates,
then it is necessary to conclude that the different
thin-walled engineering constructions  (uncut
plates, cylindrical plicate shells, platebemed
systems, polygonal reservoirs etc.) and boarder
tasks for linear and in the partials of differential
equalizations with variable coefficients [7] can be
evaluated in the more exact situation. There are
no complications with determination of second and
the next terms of row (2), because all calculation
correlations depend only on frequency of
eigentones of corresponding beams [3, 6].
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