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Abstract.
In this article the authors researched the parametric resonance impact in the moving contacting surfaces 
interaction region on friction and wear-out during distortion and wave processes course in front of the 
moving die block. The authors state that as the parametric vibrations occur on the contacting surfaces, 
there is a need to reason their occurrence, and for this reason there is a physical analogue offered, in 
which there is nonlinear unlubricated friction between the interacting parts, which depends on velocity 
of their slippage – the source of parametric (auto) vibrations on the segment in front of the movable 
part. For this reason they used the methods, allowing to determine the length of the part surface 
distorted segment, the number of half waves on the segment, and we applied the specified methods 
of distortion microasperities altitude computation as well. As a result the researchers found out that 
the reason of enhanced interacting parts wear-out is the rise of the parts diffusion layers amplitude 
vibrations due to parametric resonance effect, and this fact is the scientific novelty of this publication. 
The above allows to achieve greater reliability at determining the distortion microasperities using the 
exact expression for the bending line of the beam curvature, and also taking into account nonlinear 
dependence between longitudinal and lateral distortions of the virtual beam long axis due to the fact 
that it lost longitudinal stability.
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Challenging problem. Research of the machine 
parts friction and wear-out issues, conducted by big 
research organizations showed that if the two contacting 
objects interact regardless the friction hypothesis 
accepted for consideration on the contacting surfaces 
the compression-rarefaction waves occur [1] (see Fig.1). 
In fact our task comes down to elastic contact problem 
with account for the nonlinear effects of friction (with 
falling characteristic concerning the velocity of mutual 
frictional sliding on the contacting surfaces). 

Fig. 1 Solid indenter interacts with elastic half-space: we can 
see compression stress in A-zone and refraction one on B-zone.

It is extremely challenging to carry out affixation and 
perform solution of such task in terms of elasticity theory 
if some characteristic properties on the contacting surfaces 
are available. For this reason in a first approximation in 
terms of qualitative consideration we will take a simpler 
loading schematic diagram which comes down to 
performance the diffusion layers of each of half-space in 
form of the beam on elastic foundation with hinged ends. 
Such beam is supported at more pliable bedding, than the 
diffusion layers of each half-space.

The proposed diagram enables us to visually 
reconstruct physical image of the process. By its 
length the beam is limited in one limiting point of the 
moving (die block) contact region and immobile half 
space, and in the other limiting point of attenuation 
sphere of elastic compression wives on length of the 
immobile half space (beam), Fig.2.

Fig.2 Virtual beam on elastic foundation on the elastic 
foundation in the moving coordinates
Agreed notations: h – beam thickness; Аn – distortion 
microasperities amplitude; l1, l2 – lengths of the beam 
segments; D l1 – longitudinal distortion of the segment l1, 
Р(х), Т, Т0, Т1, Т2 – acting efforts

Further when we consider contact interaction of 
half spaces as loads on the beam we take contact 
stress in the region of the parts interaction ( хух τσ , ), 
conditioned by normal loads and friction forces.

Our contact problem can be considered as two 
coupled problems, on in the area under the die block, 
and the other in the area in front of the die block. 
The first problem allowed to determine that during 
the two parts interaction there are intervals of their 
cooperative and relative motions, otherwise there is 
nonuniformity of motion, conditioned by availability 
of positive difference between motion friction force 
and one of static friction [2].

Research method. Statement of basic materials. 
Therefore, friction forces on contact of two parts are 
not constant, but depend on the rate of their relative 
slippage. On the basis of [2] friction force on contacts 
of two parts may be presented as: 
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Where 0T  – conservative value of static friction 

force; b  is negative damping coefficient; 
∼

c  is 
coefficient which describes damping proportional 
to velocity cube; х  is a longitudinal coordinate at 
offsetting of the two parts.

The fact of force interaction of such nature of 
the parts is a prerequisite to occurrence of friction 
vibrations in the area under the die block, and the 
other in the area in front of the die block.

Upon that unsteady force ( )
•

xT  is external load for
thin coatings of half space, being in the area on front of 
the die block. Taking into account the local character 
of diffusion layers external loading, we will give form 
to this half space segment as “movable” beam of 
fixed length on elastic foundation and on the movable 
supports, oaded with longitudinal transient lload
( ) ( )

•

= xTtT .
As friction force depends on relative velocity of 

the mutual slippage of the parts, then our virtual beam 

will be loaded with unsteady force ( ) ( )



=
•

txTtT , 

which due to certain parameters ratio may 
lead to occurrence of dynamic and static unstable 
state of the beam. When we consider our movable 
beam concerning the moving coordinates, moving 
concerning long axis at a velocity V (velocity of the 
movable part movement), we will derive a differential 
equation, which describes behavior of the bending 
line of the beam on elastic foundation of the bending 
line of the beam, compressed by unsteady force 
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= xTtT  and which has swivel joint as follows:
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where ( ) ( )
•

= xTtT  is unsteady friction force 
between interacting parts, attached to virtual beam in 
form of longitudinal load;

nE  is an elasticity modulus of diffusion (hardened) 
layer of half space (virtual beam);

J  is inertia moment of the virtual beam;
( )tx,w  is dynamic deflection of the virtual beam

under nonsteady compression force ( )tT ;
c  is rigidity factor of the beam elastic foundation 

(coefficient of subgrade reaction);
0m  is mass unit of the beam length.

The differential equation (2) we consider together 
with the boundary conditions
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And the initial condition 
( ) ( )000 0, xwxw =
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If the nature of friction force change (1) is close 
to harmonic one, then it is convenient to write the 
friction force, presented by the expression (1) as 

( ) tTTtT 130 sinω+= 		  (5)
where 0T  is steady-state value of friction force 

(conservative value);
3T  is peak value of friction force variable 

component, if friction characteristic can be presented 
as quasiharmonic time function ( )t ;

1ω  is first natural virtual beam vibrations 
frequency without taking into account the friction 
(we take that autovibration process is happening to 
the first natural virtual beam vibrations frequency, 
which is confirmed by numerous experiments with 
autovibration systems).

The differential equation of longitudinal-and-
flexural vibrations of the beam on elastic foundation, 
presented here, are pertinently the differential 
equations, describing beam parametric vibrations 
under “unlubricated” friction force.

We will write the expressions for the biggest and 
the smallest friction force (by friction characteristic) 
as the function of resultant sliding load velocity р as

pfTT 003 =+ (6)
fpTT =− 30 (7)

In the presented expressions 03 TT +  – the biggest 
value of friction force (tangential force); 30 TT −  – 
the least value of friction force; 0f  is static friction 
coefficient during interaction of two parts; f  – 
coefficient of slippage friction.

On account of the expressions (6), (7) we 
can determine 3T , 0T  at changing ( )tT  under
quasiharmonic or relaxational laws.	

The solution of the equation (2) can be performed 
by Bubnov-Galerkin method [3] as:
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, (8)

In our case, accounting for the boundary conditions 
(3) we will write the solution (2) as 
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k
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When we substitute the expression (9) in the 
differential equation (2), we will receive the set of 
the standard second-order differential equations 
concerning the function ( )tfk , where ∞= ,...,3,2,1k .
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where l  is length virtual beam in the area in front 
of the movable die block, can be presented as λnl = ;

n  – number of half waves virtual beam, which 
lost elastic stability;

λ  – length of such one half wave.
Number of half waves of the virtual beam, which 

lost stability we find in accordance with [4], as a real-
valued quadratic equation positive root 
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Length of one half wave of the beam we find in 
accordance with [4] from the expression

E
JEn4

πλ =
				    (12)

It should be noted that the differential equations 
(10) do not comprise the system and are the equations 
with parametric vibrations excitation. 

The expression in square brackets is a square of 
“floating” frequency of system vibrations for each 
value k .

The equations (10) presented here in number of 
cases describe “pseudo parametric” resonances during 
effecting the mechanical system, as they turn out to be 
more dangerous than systems with ordinary excitation 
near resonance effects. The differential equations (10) 
are pretty complicated, there is no accurate solution of 
theirs in the elementary functions, so that is why we 
can write some approximate solutions for them [5]. 
However, we can judge about conclusion on stable (or 
unstable) behavior of the equations set by appearance 
of the differential equations (10). For further analysis 
it is reasonable to reduce the equations (10) to certain 

standard type. Further we take 
2

2 πω −= фtk , that is 

we make change of the variable, we will proceed to 
the equations:
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The equations we obtained, are called the 
differential equations (with variable coefficients at 

kf ) of Mathieu, in which
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The coefficients we brought are called Mathieu 
coefficients.

As we need to determine dynamic stability of the 
vibration system, described by the equations (10), (13) 
without recourse to solution of the equations, we will 
use Ains-Strett diagram applying them to the Mathieu 
equations. In order to do this in each of the equations 
(13) we determine parameters kk qa ,  for each value 
k . These values kk qa , we will plot along Ains-
Strett diagram (Fig.3), if the point with coordinates с 

kk qa ,  appears to be in the crosshatched region of the 
diagram, then vibration regime is stable and upon that 
loss of half space vibrating diffusion layer dynamic 
stability will not happen, that is the virtual beam.

Fig. 3 Ains-Strett diagram. Dashed ray is image points 
geometric locus of this mechanical system; if the frequency 
w increases, the image point approaches to the origin of 
coordinates.

For this mechanical system it is highly likely 
that the parametric vibrations occur due to periodic 
changes (quasiharmonic or relaxational) of the 
parametric loads. Parametric ones are those types of 
loads, at static actions of which the virtual beam can 
potentially lose stability in Euler Point.

In order to determine the frequencies (variable, 
floating) and amplitudes of the vibrations it is 
reasonable to allow the set of second-order differential 
equations concerning the sought-for time functions

( )tf k . When we determine them, we put them into
the trigonometric sequence (8). When we look at the 
equations (10) we can see that the set equations is 
nonlinear. As we need to make quantitative solutions 

of the equations (10) we will use nonlinear differential 
equations approximate solution method, Wentzel 
Kramers Brillouin method. In accordance with the 
method, we will present the sought-for equation as:
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••

tftf kkk (14)

In the equations presented here (14) function 
( )tkΩ  then there is a point in natural frequency of

the system “floating” near its average value
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where 1ω  is one of natural vibrations frequencies 
of the beam on the elastic foundation, in case if 
there is no friction (the natural vibrations or точнее 
autovibrations may occur from one of natural system 
frequencies, for example, first or second one). 

Generally the ratio 
0

3

T
T

 at steady vibrations are 

no more than 10-15%. During parametric resonance 
vibrations are increasing and nonsteady. 

Solution of each equation (15) according to 
Wentzel Kramers Brillouin method looks like 
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The expression (16) can be accepted as the 
approximate one, provided that the following 
condition is carried out 
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We determine the constants kk CC 21  ,  from the 
initial conditions
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Then we will finally obtain 
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Where ( )0
0 kk Ω=Ω ; ( )00 kk

••

Ω=Ω
In reality the most dangerous is the mode which 

corresponds to 1=k . The set of the equations which 
we described are certain equations with periodically 
changing frequency kΩ . Such set possesses 
equilibrium, which may turn out to be unstable under 
certain circumstances.

We can point out the qualitative solution of the 
equations (10) as [5]

( ) ( ) ( )teCteCtf k
t

kk
t

kk 2211 ψψ µµ −+= 	 (20)
The expression (20) is a complete solution of 

Mathieu equations where 
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( )kk qa ,µµ =  is a constant, which depends on 
the coefficients kk qa , , 

( ) ( )tt kk 21 ,ψψ  are some periodic time functions,
kk CC 21  ,  are arbitrary constants of the desired 

solutions.
In our system of the movable die block and the 

virtual beam, the parametric vibrations may occur 
under impact of small perturbations. The first item 
(20) is vibration process with increasing amplitudes, 
that is why peak values of the solution (20) may reach 
considerable magnitudes. Such vibrations, caused by 
instability of the equilibrium state of the system, are 
called parametric resonance. 

Parametric resonance is the most dangerous 
parametric phenomenon, it’s external appearances 
make it look like ordinary resonance. However, 
in accordance with (20) the vibrational amplitude 
during parametric resonance increases according to 
exponential law, and during the ordinary resonance 
– by linear one. Parametric resonance can develop
if there is friction available [5], which is typical for 
our task, upon that parametric resonance can occur in 
the cases when ratio of the natural system vibrations 
frequency to the equations coefficients alternating 
frequency half (10) is close to non-vanishing integer.

As the solution of the quasilinear problem (2), 
(3), (4) is necessary, we will use Bubnov-Galerkin 
method together with approximate method of 
nonlinear mechanics – Wentzel Kramers Brillouin 
method. Such solution gives consistent results in the 
instants of time which precede the stability loss by the 
virtual beam or the moments about origin during loss 
of stability. The mere fact of stable state of the system 
is determined, as it was noted before, by Ains-Strett 
diagram.

When the virtual beam loses stability it receives 
nonlinear (inelastic) wavy distortions. For this 
reason we accept half of distortions wave amplitude 
as distortion microasperity. When the beam loses 
stability it receives permanent distortions, which 
characterize the extra microasperities formed. In order 
to determine them it is sufficient for us to consider 
instead of dynamic equation (2) its static analog [6]. 
From the modified equation we can determine the 
parametric load.
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In this equation (21) the same notations were 
introduced, as in the equation (2) with the partial 
derivatives, only

( )xww =  is static deflection of the virtual beam,
0TT =  is stationary (parametric) value of the 

compression force. 

Critical (parametric) load can be determined in 
accordance to [7] from the expression
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We consider the equation (21) with the boundary 
conditions (3). The solution of the equation (21)  
by Bubnov-Galerkin method we will write as 
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Generally diffusion layers of the interacting parts 
at the intensive load are significantly flexible, 

the curvature of the virtual beam – 
ρ
1

 we take 

as equal to 2

21
dx

wd
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ρ
, then a significant error slips 

into the calculations, so we use the precise meaning 
of curvature of the curve as 
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We will simplify it by Newton binomial (24)
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When we determine the beam curvature, we will 
still use only two items in the expression (25).

In the expressions (24), (25) the linear coordinate 
x  is replaced with the arc coordinate s .

In relation to the structure of the equation (21), 
describing the longitudinal deflection of the beam 

on elastic foundation instead the value 2

21
ds

wd
=

ρ
we consider the second derivative from the specified 
expression of the curvature (25). The specified 
expression of the beam curvature we will substitute 
to the first item (21) after its double differentiation.
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We will carry out its double differentiation on the 
coordinate s .
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As we need to determine deflection bends of the 
beam in case of taking into consideration the precise 
meaning of the curvature we will carry out substitution 

l
sfw πsin=  in the expressions (21) 

and (27). Without disturbing similarity of arguments 
in the expression for w  we conventionally drop 
subscripts k .
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After substitution of w  into the expression (27) 

we will obtain

When we substitute the function of the curvature 
(27) into the equation (21), and also the expression w  
into the rest of the differential equation items (21) and 
require the selected functional orthogonal 

property result with the function 
l
sπsin .

As a result of the selected functional integration 
in the range from 0  to l  we will obtain, in order to 
determine, the deflection bends of the virtual beams, 
which possess big flexibility (and nonlinear elasticity)
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Ignoring the trivial value 0=f , we will obtain 
the expression to determine the deflection bends 
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Alongside this there is an influence on development 
of the lateral deflection by shifting motion of the 
virtual beam exposed (movable) end and account for 
longitudinal rigidity of the beam FEn  (Fig.4). 

Fig.4 The virtual beam on elastic foundation with account 
for longitudinal rigidity FEn

During the effect of the longitudinal force T  in the 
beam (in front of the die block) the displacement of its 
movable end is taking place on the value vl − , upon 
that the second end of the beam remains immovable. 
Then between the longitudinal displacement of the 
beam v  and the lateral deflection w  the nonlinear 
dependence is being established. The longitudinal 
movement of the beam movable end we will find 
as difference between the original length l  and 
projection of the beam curved axis
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In the presented expression ϕ -angle, consisting 
of the tangent to the arc of the beam deflected axis 
with long axis x0 .

We will expend the expression under integral sing 
in the series by formula of Newton binomial.
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Substituting the expression (28) into (32) and 
performing integration in the range from 0 to l  and 
taking into account the value of the integrals 

2
cos

0

2 lds
l
sl

=∫
π

; lds
l
sl

8
3cos

0

4 =∫
π

, we will 

receive the meaning of the longitudinal displacement 
v  through the deflection bend f  and length of the 
beam l  as
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At longitudinal displacements of the beam, besides 
the variable force of friction ( ) 
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xTtT , increment
of the longitudinal force T∆ occurs, conditioned by 
longitudinal rigidity of the beam material under the 
die block
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Then the differential equation of the longitudinal 

stability (static or dynamic stability), if turning to the 
expression (2), looks like
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In the presented expressions (34), (35) FEG n=
– longitudinal rigidity of the virtual beam; F is
its cross-sectional area. As it follows from (31) 
longitudinal displacement of the exposed end of the 
beam in front of the die block connected nonlinearly 
with lateral displacement (33).

When we substitute the expression (33) into the 
differential equation (35) with taking into account 
(34) and requiring orthogonal property of the obtained 

functional with the function 
l
sπsin  we come to

the expression, containing the beam deflection 
bend f .
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If the deflection f , included into the equation (36) 
takes not too big meaning, which in reality corresponds 
to viscoelastic behavior of the materials (at operating 
temperatures approximately C0600450 ÷ ), then in 
the expression to determine the approach of the ends 
(33) it would be sufficient to use only the first item, 
while the deflection bend of the virtual beam can be 
determined from the expression 
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Altogether the deflection bend is calculated from 
the expression 
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In case if the beam loses stability and the deflections 
f  will be significant, which corresponds to fluidity of 

the material (at Ct 00 600≥ ), then in the expression 
for the approach of the ends (33) we will use only the 
first two items. Then, carrying out the modifications 
with the differential equations (35) also by Bubnov-
Galerkin method, keeping in the expression (33) for v  
two items, we come to the next expression to determine 
the deflection bend f  in the plastic domain
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The cubic equation which we obtained, is an 
incomplete Cardano equation:

03 =++ qpff 	 (40)
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the coefficients of the incomplete Cardano 
equation.

We will calculate the roots of the equation (39) by 
Cardano formulas
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Moreover, only the real numbers we take as the 
roots (40). For solution of the equation (40) it is 
enough to separate one real positive root, if the rest 
of the roots are complex-conjugate or the real ones 
and the negative ones, then the first root will be the 
solution of the equation (40). In case if all the roots 
are real, then we choose the biggest positive root as 
the solution.

When we further specify the solution of our problem 
on determining the deflections of the beam (the biggest 
meaning of the microasperity) in the plastic region we 
will receive by using the specified meaning of the beam 
curvature, the formula (25), and also the longitudinal 
movement of the virtual beam front support v  in 
the formula (33) and using algorithm of solution in 
Bubnov-Galerkin form, we will obtain 
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This expression is the general-typed cubic 
equation. For its solution we need to introduce it to 
the type (40), or separate one real root, after which, 
to determine the other roots by resolution (40) into 
factors. If the roots are real, then we choose the biggest 

positive root as f , if one root is real (positive), and 
the other two ones are complex-conjugate, then as the 
solution we take the real positive root.

The overall conclusions and the research 
objectives

If the parametric effects occur in outer layers of 
the parts during friction and wear-out, it is necessary 

that characteristics of friction ( )



=
•

txTT

 as function of the parts mutual 
movement velocity had a “falling” nature and the 
negative damping was observed in the system, then in 
the diffusion layers of the parts autovibration process 
develops and these layers have unstable equilibrium 
state, caused by tangential forces крTT ≥ .

This is reason why there are prerequisites for 
autovibrations and parametric resonance to occur 
in the system. The nature of the process itself is 
conditioned with the view of the solution of Mathieu 
equations and the ratio of the coefficients 
, , in which there are increasing and transient 
components available.

The set forth arguments allow to outline the 
following scenarios of the transient processes 
development in the diffusion layers of the half space:

1. Explicitly parametric vibration regime,
when vibration process is self-excite (unstable) at 
longitudinal load close to critical крTT =
and small disturbing effects. In this case the parametric 
resonance develops with increasing amplitudes and 
further quick destruction of the diffusion layers of 
the virtual beam (the cleavage for the materials with 
high hardness 40≥HRC , or plastic collapse and the 
following cut of the distortion microasperities.

2. Pseudo autovibration process with floating
frequency and the limited amplitudes. If upon that 
each pair of meanings kk qa ,  get the stability zone 
on Ains-Strett diagram and крTT = , then
loss of stability by diffusion layers in Euler Point 
may occur, but the parametric resonance against 
the background of loss of stability will not develop 
and quick destruction of the diffusion layers will not 
happen. In this case there will be wear-out of distortion 
microasperities occurred together with engineering 
microaspetities (along with this the quantities of 
the engineering and distortion microasperities will 
be commensurable). In consequence of cyclical 
nature of loading the further fatigue failure of all the 
microasperities will happen, upon that intensiveness 
of wear-out increases.

3. The stationary longitudinal wave process occurs

if ( ) ( )



=
•

txTtT  and upon that the characteristics 



27Metallurgical and Mining IndustryNo.3 — 2018

Electrometallurgy
of friction does not have the falling segment or 
negative damping, then in the area in front of the die 
block the stationary wave is formed moving (with the 
die block velocity, which is considered in the moving 
coordinates). If wavy distortions of the diffusion 
layers are final, then wear-out process is similar to 
wear-out of the engineering microasperities.

4. The immovable lateral wave process (in the
moving coordinates) occurs at the liquid friction, 
when we can ignore friction force  due 
to its smallness. Upon that virtual beam will test 
distortion of the flexion from weight effect of the 
displacing die block Р. In this case displacement of 
the die block and the flexural wave of distortion in the 
finite case leads to fatigue failure of the interacting 
flats of the surfaces even at small weight value of the 
die block Р.

Turning to the version 1, as to the one most 
unfavourable, which correspond to parametric 
resonance, we can calculate the biggest distortions 
for static loading by distortion to determine the 
biggest stress, like in Euler problem. Upon that when 
we take into account nonlinear dependence of the 
elasticity modulus from the distortions ( )εnn EE = . 
We preliminarily calculate the stresses in the virtual 
beam at the biggest lateral distortions without taking 
into account the dependence ( )εnE , calculating 

constEn = , an then with account for amendment 
for alteration ( )εnE , we will receive the real stress 
at which the beam loses stability with its further 
destruction.

The considered physical phenomenon of the wave 
generation in front of the moving flat die block can 
be generalized and for the case of displacement of 
the rotating cylinder on the half space. The proposed 
information may be useful at calculations of 
engineering processes on the pressure metal treatment 
(rolling, drawing, blacksmithing and others). 

Calculation of such processes is necessary for 
choosing correctly the capacities of the rolling and the 
drawing mills. In many cases they allow to determine 
the billets dimensions correctly, calculate the optimal 
conditions of distortion, which provides manufacture 
of high-grade products.
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