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Abstract
In the work, we obtained probability distribution of error signals with different confidence levels by Hampe cen-
sored estimation function. The data collection of “input-expectation” was divided into four data space where the 
ratios of data disturbed by impulse noise are different. The data space with small data ratio was calculated by SM-
SCMPNLMS Algorithm. In data space with large data ratio, the computation complexity was reduced to solve 
steady-state problems because of pulse noise disturbance by restraining error signal amplitude and using larger 
error threshold. The effectiveness of this algorithm was proved by simulation.
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1. Introduction
Real-time voice communication causes increase 

of echo delay with sparse path. The convergence rate 
was proportional to coefficient sparseness. MPNLMS 
algorithm in References [1], [2] and [3] was used to 
update adaptive filter coefficients in network echo 
cancellation system. The convergence performance 
was affected by the adaptive filter coefficient sparse-
ness. Therefore, the contradiction between conver-
gence rate and calculation complexity cannot be 
solved. 

In the work, we obtained probability distribution 
of error signals with different confidence levels by 
Hampe censored estimation function. After that, the 
data collection of “input-expectation” was divided 
into four data space where the ratios of data disturbed 
by impulse noise are different.The data space with 
small data ratio was calculated by SM-SCMPNLMS 
Algorithm. In data space with large data ratio, the 
computation complexity was reduced to solve steady-
state problems because of pulse noise disturbance by 
restraining error signal amplitude and using larger er-
ror threshold. The effectiveness of this algorithm was 
proved by simulation.

2. SM-scmpnlms algorithm 
In set-membership estimation algorithms, S de-

notes collection of “input-expectation” data pairs 
(x, d) in adaptive filter. When (x, d) belongs to S, 
then Θ  will denote collection of coefficient vectors 

1Nw R +∈  where input error range is not more than 
threshold 1γ . kH  denotes collection of the whole w  
where input error range is not more than threshold 

1γ  at k. As the constraint set of data pair (x, d) with 
hyperplane border, kH  is defined as follows. 

1
1{ : }N T

k k k kH w R d w x γ+= ∈ − ≤   (1)

Where xk and wk are input signal and coeffi-
cient vectors of filter at k ( =[ 0, 1, 1, ]Tk k k L kx x x x −    ,

=[ 0, 1, 1, ]Tk k k L kw w w w −    ); L is the order of filter; 
kd  system expectation signal at k.

T
k k k kd x n vϖ= + +   (2)

Where ϖ  is identified echo path; kn  additive 
white Gaussian noise; kv  impulsive noise.

In SM-SCMPNLMS algorithm, if k kw H∈ , then 
kw  will not be updated. If k kw H∉ , then the fol-

lowing 
constraint optimization criterion will be used for 

vector update.

1
1

2
1min

k
k k Q

w w −
+

+ −   (3)

The following constraint condition is satisfied.

1 1
T

k k kd x w γ+− =   (4)

The Lagrange multiplier is used to solve the above 
optimization problems. After that, output error signal 
of filter at k is defined as follows.

T
k k k ke d x w= −   (5)

Then we obtain SM-SCMPNLMS coefficient up-
date formula.
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Where 0α  is set-membership step.
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Where 1 5 nγ σ= ; 2
nσ  is disturbance signal vari-

ance without impulse noise in system. In Equation 
(6), δ  is regularization parameter. It is used to pre-
vent a zero denominator from minimum input signal. 
In SM-SCMPNLMS coefficient update equation, 

1kQ +  is the step control matrix for filter coefficient 
assignment ( 1 0, 1 1, 1 1, 1{ ...k k k L kQ diag q q q+ + + − +=     }). 
Diagonal elements in 1kQ +  are calculated by the fol-
lowing recurrence relation. 
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Where 
1

,
0

L p
p

k i kp
i

w w
−

=

= ∑ .

{ }, 1 , , 1max ( ),l k l k l kF wξ τ υ+ += ×   (10)

Where τ  is used to prevent parameter update stop 
from overlarge coefficient difference (τ =1 L -5 L ). 

{ }, 1 0, , 1,max , ( , ( ), ( )l k k l k L kF w F w F wυ η+ −=  
(11)

where η  is used to prevent algorithm freeze when 
the whole coefficients are 0 (η =0.01).

, ,(| |) (1 1000 | |)l k l kF w In w= + ×   (12)

3. Ism-scmpnlms
In traditional set-membership estimation algo-

rithms, large pulse noise in system will cause sud-
den increase of ke  to make 1ke γ>>  when filter con-
verges tosteady state. Then coefficient update step 0α  
is close to 1. Based on set-membership, filter coef-
ficient will not update or update at little step when 
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filter converges to steady state. Therefore, we use 
Hampe censored estimation function ( )ρ •  to restrain 

ke  in Equation (7), thus obtaining an improved SM-
SCMPNLMS algorithm in the work. ( )ρ •  is defined 
as follows based on Reference [4].
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(13)

Where threshold parameters ξ , 1∆  and 2∆  affect 
restrain effect of algorithm to impulse noise. In im-
pulse noise disturbance condition, the whole distribu-
tion of ke  is hardly to determine. However, it is as-
sumed that ke  follows Gaussian distribution based on 
additive impulsive noise. Its variation can be obtained 
by estimation. The probability will be denoted as fol-
lows when ke  is larger than certain threshold T.

{ }
,

( ) 1
2

T k
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 = > = −
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Where erfc(τ) is error function  

( ( )
2

0

2 x
kerfc e dx

τ
τ

π
−= ∫ ); 2

,e kσ  error signal variation 

at k. error signal variation is updated by the methods 
in References [6] and [7].

2 2
, , 1 ,(1 ) ( )e k e e k e e kmed Aσ λ σ λ β−= + −   (15)

Where 51.483(1 )
1wN

β = +
−

; 2 2
, 1{ , , }

we k k k NA e e − += 

; 

eλ  is forgetting factor; ( )med •  median filter; wN  
window length of median filter. Different thresholds 
T are used to obtain error signal probability distri-
bution of different confidence levels. It is denoted 
that { }( ) kk P eξθ ξ= > , { }

1 1( ) kk P eθ∆ = > ∆  
and { }

2 2( ) kk P eθ∆ = > ∆ . If ( ) 0.05kξθ = , 

1
( ) 0.025kθ∆ =  and

2
( ) 0.01kθ∆ = , then we will obtain

,1.96 e kξ σ= , 1 ,2.242 e kσ∆ =  and 2 ,2.576 e kσ∆ =  
by calculation. The probabilities are 5%, 95%, 97.5% 
and 99% when ke ζ< , 1keξ ≤ < ∆ , 1 2ke∆ ≤ < ∆  
and 2ke ≥ ∆ [8]. Then S is divided into subspace 1S ,

2S , 3S  and 4S . 

1 2 3 4S S S S S=   

  (16)

{ }1 2( , ) : 0N TS x d R d w x γ= ∈ ≤ − <   (17)

{ }2 2 3( , ) :N TS x d R d w xγ γ= ∈ ≤ − <   (18)

{ }3 3 4( , ) :N TS x d R d w xγ γ= ∈ ≤ − <   (19)

{ }4 4( , ) :N TS x d R d w xγ= ∈ ≤ −    (20)

Where 2 ,1.96 e kγ ξ σ= = ; 3 1 ,2.242 e kγ σ= ∆ = ; 
4 2 ,2.576 e kγ σ= ∆ = . The above equations show that 
1S , 2S , 3S  and 4S  represent data pairs ( , )x d  with 

output error ranges in 2[0, )γ , 2 3[ , )γ γ , 3 4[ , )γ γ  and 
4[ , )γ ∞ . Impulse-free noise disturbance data pairs 

( , )x d  are 95%, 2.5%, 1.3% and 1.2% in subspace 1S ,
2S , 3S  and 4S  by Gaussian signal probability distri-

bution. If 1( , )k kx d S∈ , 2( , )k kx d S∈ , 3( , )k kx d S∈  
and 4( , )k kx d S∈ , then 1kH , 2kH , 3kH  and 4kH  
will denote collections of coefficient vectors w  
satisfying 1

T
k k kd w x γ− ≤ , 2

T
k k kd w x γ− ≤ , 

3
T

k k kd w x γ− ≤  and 4
T

k k kd w x γ− ≤  at k moment.

1 2 3 4k k k k kH H H H H=      (21)
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                                                   =  (22)

In ISM-SCMPNLMS algorithm, filter coefficient 
will be conducted with iterative update only when 

kw H∉ , thus effectively decreasing iterations. The 
minimum disturbance principle derives the target of 
algorithm as follows. In iteration process, the weight 
vector of adaptive filter changes to the minimum un-
der the restrain of updated filter output. The following 
constrained optimization problems are solved.
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2
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k k Q

w w −
+

+ −   (23)

According to set-membership theory, kw  will 
evolved to the border of 1kH , 2kH , 3kH  and 4kH  
when kw H∉ . Therefore, constraint optimization 
problems should satisfy the following conditions. 
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Using Lagrange multiplier method, the follow-
ing problems can be solved to obtain a set of uncon-
strained minimization function.
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Where λp is Lagrange multiplier and p=1, 2, 3, 4. 

It is denoted that gradient of 1[ ]p kF w +  is zero. 

1 12
p

k k k kw w Q x
λ

+ += +    (26)

Constraint condition equation (24) is substituted 
into Equation (26).

12
p T T

k k k k k k p k px Q x d x w e
λ
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Equation (28) is substituted into Equation (26).
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Regularization parameter δ  is introduced into 
Equation (29) to derive coefficient update equation of 
ISM-SCMPNLMS algorithm.
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Adaptive filter coefficient update process indi-
cates that error signal is large in the initial stage of 
the algorithm and ek vkσ σ . The calculated mode 
of 1γ  and 2γ  shows that 2 1γ γ . The coefficient is 
updated in subspace 1S . 1 keγ  is a small positive 
number. Therefore, ka  is a positive number close to 
1. The algorithm can converge quickly. If filter con-
verges to steady state and there is no impulse noise, 
then ek vkσ σ≈ ; 2 1γ γ< ; 0ka = . Therefore, the up-
date time of filter coefficient is reduced. If the filter 
converges to steady state and there exists impulse 
noise, then ke  will suddenly increase. The coeffi-
cient is updated in subspace 2S , 3S  and 4S . If ke  
is equal to 2γ , 3γ  or 4γ , then kw H∈ ; 0ka = . The 
filter coefficient is not updated. Otherwise, ka  will be 
selected from 21 keγ− , 31 keγ−  or 41 keγ− .
Therefore, if the filter converges to steady state and 
there is impulse noise disturbance, then the range of 

ka  will be [0,0.13) . The algorithm instability prob-
lems can be solved.

4. Simulation analysis
ISM-SCMPNLMS is applied in echo elimina-

tion to test effectiveness of the algorithm. Firstly, the 
method in Reference [8] is used to generate sparse 
echo path with impulse response length of 256 in Fig-
ure 1. The adaptive filter order L is equal to channel 
sparse echo path length. Secondly, the true voice with 
sampling frequency of 8 kHz is taken as input signal 
to compare the above algorithm with SCMPNLMS 
and SM-SCMPNLMS in References [2] and [3]. In 
SCMPNLMS algorithm, the step is 0.3. In SM-SC-
MPNLMS algorithm, error threshold 1 5 nγ σ= . Af-
ter passing through echo path, input signal is added 
with Gauss white noise kn  to obtain expectation 
signal. Impulse noise ( )v k  is iterated at the positions 
2
5
K , 3

5
K  and 4

5
K , where K  is the length of in-

put data. At last, normalized misalignment is taken 
as performance evaluation index. It is defined as fol-
lows.

22
10 2 2

10 log kwϖ ϖ−   (32)

Figure 1. Impulse response of sparse echo path 

Algorithm convergence performance comparison 
based on true voice input is researched by simulation 
experiment.

Figure 2. shows normalized misalignment per-
formance of new and related algorithms based on 
true voice input. The SNR is 35dB. There exists 
large impulse noise disturbance where 52 10k = × ;

53 10k = × ; 54 10k = × . In Figure 2, there is no 
impulse noise disturbance at the early stage. ISM-
SCMPNLMS algorithm proposed in the work 
has familiar performance with SCMPNLMS and  
SM-SCMPNLMS algorithms. Large impulse noise 
emerges at the steady stage. SCMPNLMS and SM-
SCMPNLMS algorithms have poor output perfor-
mance in weight updating and filtering solution. 
However, ISM-SCMPNLMS algorithm does not 
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update or updates filter coefficient by little step. The 
computation complexity was reduced to improve 
steady-state performance by restraining error signal 
amplitude and using larger error threshold.

Figure 2. Performance comparisons of algorithms based 
on true voice

5. Conclusions
In the work, the data collection of “input-expec-

tation” was divided into four data space by ISM-
SCMPNLMS algorithm. The data space with small 
data ratio was calculated by SM-SCMPNLMS Algo-
rithm. In data space with large data ratio, the compu-
tation complexity was reduced to solve steady-state 
problems because of pulse noise disturbance by re-
straining error signal amplitude and using larger er-
ror threshold. Simulation results show that the new 
algorithm can effectively restrain large impulse noise 
disturbance compared with SM-SCMPNLMS algo-
rithm in the same convergence rate.
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