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Abstract  
A new method for solving the equations of thermal conductivity materials with specific 
properties is suggested. This method is useful for an approximate estimation of the 
temperature field of materials. 
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Introduction 
With the intensification of heat transfer 

processes (MOT), a significant increase in 
operating temperatures and increased requirements 
for precision of thermotechnical calculations 
gradually and increasingly become apparent 
shortcomings of well-developed theory based on 
linear boundary value problems of heat conduction 
(BPHC). Therefore, in the last few decades, 
increased attention is paid to the non-linear 
mathematical modeling (MM) of thermal 
processes. 

Due to the mathematical difficulties exact 
solutions of nonlinear BPHC obtained only for 
some special cases. Generally, for this purpose, 
there are various approximate methods, which can 
be divided into two fundamentally different 
groups. The first group includes well known [1 ... 
3] exact methods for solving linear BPHC. But the 
use of these methods must be preceded by the 
corresponding output linearization of nonlinear 
problems. The second group includes those 
approximation methods, which allow to solve 
directly nonlinear BPHC without prior 
linearization. This is primarily numerical and 
analogue methods and approximate analytical, 
integrated, variation, disturbance (small parameter) 
and others [4, 5]. These include the method of 
equivalent sources (MES) [6,7]. 

As for the research of thermal processes in 
the bodies of functionally dependent TFH are 
(non-linearity of the first kind), they are related to 
the difficulties caused by not only non-linear 
equation, but the fact that laws change TFH not 
reliably identified. Of course [6,7] the dependence 
of the thermal conductivity ( )Tλ  and volumetric 
specific heats ( )ТС  are approximated by 
polynomials 
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For many materials coefficients iT  are so small 
that 2≥i  members can be negligible that to some 
extent consistent with modern concepts of the 
mechanism of thermal conductivity as a 
superposition of streams of photons and electrons, 
where the fate of metals in the past for a specific 
temperature range is dominant. 

So in future we may consider nonlinear 
(quasi-linear) differential equations containing 
linearly dependent on temperature TFH that after 
going to the relevant dimensionless quantities take 
the form of: 
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Introduced here coefficients Сεελ , will be 
called nonlinear parameters of the 1st kind. 

Statement of the problem 
If we restrict ourselves to the linear case 

TFH (1), the temperature state (TS) unlimited plate 
in convective heat transfer solutions of the BPHC 
is determined: 

 

( ) ( )

( ) 00,

;11

=

∂
∂

+=







∂
∂

+
∂
∂

ξθ
τ
θθε

ξ
θθε

ξ λ С                 (2) 

( ) ( )[ ]

0

;1

0

1

=
∂
∂

−=
∂
∂

+

=

=

ξ

ξ
λ

ξ
θ

τθθ
ξ
θθε ПCП Bi

  (3) 

where 

( ) ( )

;

;;;,,

0

2
0

0

0

λ
α

τξτξτξθ

HBi

H
ta

H
x

ТТ
ТТ

K

С

=

==
−
−

=
          (4) 

( )τξ ,T  - the body temperature, К; 0T  - 
its initial value, К; СT  - temperature of the heating 
medium, К; x  - coordinate (starting from the 
center section), m; H2  - plate thickness, m; t  - 
time, hour; 000 Ca λ=  - thermal diffusivity 

coefficient in 0ТТ = , hourm 2 ; Кα  - 

convective heat transfer coefficient, ( )Кm
W

2  . 

To solve this BPHC (2), (3) we apply the 
method of equivalent sources (MES) in the well-
known theory of heat near-boundary layer [6] 
(engineering model of thermal conductivity), 
which examines the process of conductive heat 
transfer in two stages: initial heating (inertial phase 

00 ττ ≤≤ ) and heating of the whole volume 

(ordered phase 0ττ ≥ ) 
Solution of the problem 
The first (inertial) stage ( 00 ττ ≤≤ ;

( ) 1≤≤ ξτβ ) solving equations MES takes the 
form: 
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where "source equivalent" ( )τ1f is defined by the 
integral 
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Instead symmetry condition (3)2 introduces 
coupling conditions of temperature fields is not 
warmed (( ( )τβξ ≤≤0 ) 00 =θ ) and warmed (

( ) 1≤≤ ξτβ ) ( )τξθ ,1 ) zones on the border 

( )τβξ =  of their distribution 

( ) ( ) ( ) 0,;0 11 ==∂∂
== τβξτβξ τξθξθ .         (7) 

Integrating solving equations (5) and twice by  ξ  
using the condition (7), we obtain 

( ) ( ) ( )[ ]{ }111, 2
11 −−+= τβξτε

ε
τξθ λ

λ

f  .     (8) 

After substitution of the function (8) in the 
boundary condition (BC) (3)1 we obtain 
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Expanding radical (9) in power series and retaining 
the first two of its members have 
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Thus the inertial phase approximate solution of 
problem (2), (3) takes the form 
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Position Front warming ( ) ( )τβτ −=1l  in 
principle is determined by integral condition (6). 
However, this procedure results in inappropriate 
complex calculations. Due to the rapidity inertial 
stage, we may assume TFH change during this 
period was insignificant and was determined ( )τl  
by the solution of the linear problem [5] 
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or simplified 
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At low ( 25,3<<Bi ) and high ( 5,6>Bi ) 
respectively we have 

( ) ( ) 121;12;61;6 00 ==== ττττττ ll  . 
(15) 
At the time 0τ  of completion warming 
( ) ( ) 0,1 00 == τβτl  
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The second (ordered) phase (

10;0 ≤≤≥ ξττ ) Solving equations similar to 
(5): 
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Integrating equation (18) and using the BC 

(3), we find 
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Substituting the function (20) in the 

condition (19) we obtain the expression
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In order to simplify some free from radical 

and integral (21), which function ( )τξθ ,2  (20) 
in the second term (21) let us replace the first two 
members of its power series, i.e. 
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In this case, expression (21) takes a 
simpler form. Keeping the right side of (21) 
members only dependent on the time τ , we arrive 
at the differential equation 
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integral which is defined transcendent expression: 
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In order to receive functions ( )τ2f  in an 
explicit form shall spread out ( )τ12ln f  in power 
series 
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and limited to the first two of its members ( 1=n ), 
we find 

( ) ( )ττ 22 ln1 ff +≈  .                                   (26) 
Then equation (24) after substituting in the 

first term of the function (26) leads to the 
expression: 
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Used simplification (22) and (26) is quite 
legitimate because it relates to members, usually 
containing the nearest multiple small parameters 
λε and Сε nonlinearity, i.e. secondary member, 

and do not touch the main members of the inherent 
solution of the corresponding linear problem   (

0== Сεελ ). 
Introducing the notation 
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we present the solution (20) function
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This ends solution of the nonlinear heat 

conduction problem. 
References 

1. Pavlenko A.M., Koshlak H.V. (2015). 
Production of porous material with 
projected thermophysical characteristics, 
Metallurgical and Mining Industry, No1, 
p.p. 123-128. 

2. Pavlenko A.M., Koshlak H.V. (2015). 
Design of processes of thermal bloating of 
silicates, Metallurgical and Mining 
Industry, No1, p.p. 118-123. 

3. Pavlenko A.M., Koshlak H.V. Usenko 
B.O. (2014). Peculiarities control the 
forming of the porous structure, 

Metallurgical and Mining Industry, No6, 
p.p. 50-55. 

4. Pavlenko A.M., Koshlak H.V. Usenko 
B.O. (2014). Heat and mass transfer in 
fluidized layer, Metallurgical and Mining 
Industry, No6, p.p. 60-65. 

5. Pavlenko A.M., Usenko B.O., Koshlak 
H.V. (2014). Analysis of thermal 
peculiarities of alloying with special 
properties, Metallurgical and Mining 
Industry, No2, p.p. 15-20. 

6. Pavlenko A.M., Usenko B.O., Koshlak 
H.V. (2014). Research the energyefficient 
process of high-speed casting of metal 
between the cooling rolls, Metallurgical 
and Mining Industry, No5, p.p. 68-72. 

7. A. M. Pavlenko, B. I. Basok, A. A. 
Avramenko (2005).  Heat conduction of a 
multi-layer disperse particle of emulsion. 
Heat Transfer Research,volume 36, Issue 
1&2, pages 55-61. 

 
 

346 © Metallurgical and Mining Industry, 2015, No. 2 


