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Abstract
In this paper, a new discretization method to obtain the sampled data representation of the time 
delayed nonlinear non-affine continuous control system is proposed. This discretization method is 
based on the matrix exponential computation. The mathematical structure of the new discretization 
scheme is explored. Then it is applied to obtain the discrete form of the nonlinear non-affine time 
delayed continuous systems. The resulting time discretization method provides a finite dimensional 
representation for nonlinear control systems with time delayed non-affine input, thereby enabling the 
application of existing controller design techniques to such systems. The performance of the proposed 
discretization procedure is evaluated by means of the simulation study. In the simulation various 
sampling rates and time delay values are considered. The results demonstrate that the proposed 
discretization scheme can assure the system’s accuracy requirements.
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1. Introduction
Nowadays, control relevant systems characterized 

by time delay problems are encountered in more and 
more situations. Efforts have been devoted to mini-
mize the time delays. However, time delay cannot be 
eliminated totally due to its inherent nature, even with 
today’s advanced technology. The reasons for this can 
be grouped into two major kinds. The first one is that 
time delays are becoming increasingly more wide-
spread in control systems because of the convergence 
of communication and computational systems with 
traditional control engineering.  Controller communi-
cation, especially communication over local area net-
works (LANs) or wide area networks (WANs), and 
complex computations resulting from digital control-
ler implementations result in large time delays. In the 
case of WANs, such time delays are also time vary-
ing. As the communication and computational func-
tions present in embedded control systems increase, 
the impact of time delays becomes more substantial 
and cannot be overlooked. The second reason is that 
control systems with non-negligible time delays ex-
hibit complex behaviors because of their infinite di-
mensionality. Even a linear time-invariant (LTI) sys-
tem with a constant time delay in the input or state has 
infinite dimensionality if expressed in the continuous 
time domain. As a result, controller design techniques 
developed over the last several decades for finite di-
mensional systems are difficult to apply to time delay 
systems with any degree of effectiveness.  Control 
system design methods that explicitly account for the 
presence of time delays are required.

Effects of time delay on the stability and per-
formance of control systems has drawn attention of 
many investigators in general process control sys-
tems, power systems, bilateral teleoperation systems, 
and networked control systems [1-5]. In general, 
time delay in active control systems causes unsyn-
chronized application of the control forces, and this 
unsynchronization not only degrades the system per-
formance, but also causes instability of the system 
response. Many of these models are also significantly 
nonlinear which motivates research in the control of 
nonlinear systems with time delay. A natural direction 
is to try to extend the ideas and results of nonlinear 
non-delay control to systems with delay.

Engineering studies dealing with time delay sys-
tems are extensive [6-9]. Cao and Wang investigated 
the problem of the robust stability for uncertain sys-

tems with time delay [10]. They used the Lyapunov 
method and quadratic stability theory to provide the 
delay-dependent stability criterion for the uncertain 
systems with time delay. Chemical reaction systems 
are often complex dynamic time-delay systems that 
have to operate successfully in the presence of un-
certainties. Huang et al. presented a finite element 
collocation method to carry out flexibility analysis of 
chemical reaction systems with time delay [11]. The 
proposed method was combined with the linear quad-
ratic regulator and Lagrange polynomial for the opti-
mal solution of control variables and state variables 
respectively. Karimi and Gao presented a mixed 2H /
H∞ output-feedback control design methodology for 
second-order neutral linear systems with time vary-
ing state and input delays [12]. Delay-dependent suf-
ficient conditions for the design of a desired control 
were given in terms of linear matrix inequalities. Mo-
elja and Meinsma presented the 2H -optimal control 
problem of systems with multiple input delays [13]. 
Wu et al. investigated the problem of delay-depend-
ent stability analysis for discrete-time Markovian 
jump neural networks with mixed time-delays [14].

Nowadays, modern nonlinear control strategies 
are usually implemented on a microcontroller or dig-
ital signal processor. As a direct consequence, the 
control algorithm has to work in discrete-time. For 
such digital control algorithms, one of the follow-
ing time discretization approaches is typically used: 
time discretization of a continuous time control law 
designed on the basis of a continuous time system; 
and time discretization of a continuous time system 
resulting in a discrete time system and control law 
design in discrete time. It is apparent that the second 
approach is an attractive feature for dealing directly 
with the issue of sampling. It should be emphasized 
that in both design approaches time discretization of 
either the controller or the system model is necessary. 
Furthermore, notice that in the controller design for 
time delay systems, the first approach is troublesome 
because of the infinite-dimensional nature of the un-
derlying system dynamics. As a result the second ap-
proach becomes more desirable and will be pursued 
in the present study.

In the field of the discretization, for the original 
continuous-time systems with time free case the tra-
ditional numerical techniques such as the Euler and 
Runge-Kutta methods have been used for getting the 
sampled-data representations [15]. But these meth-
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ods need a small sampling time interval. Because it 
is necessary to meet the desired accuracy and they 
can not be applied to the large sampling period case. 
But due to the physical and technical limitation slow 
sampling is becoming inevitable. This paper presents 
a new matrix exponential approach to obtain the sam-
pled data representation of the nonlinear non-affine 
delayed systems. The proposed discretization method 
can provide accurate and finite dimensional discret-
ization results even in the case of big simpling pe-

riod, so that the existing nonlinear controller design 
techniques can be applied to the nonlinear non-affine 
delayed systems.

2. Preliminary
In the present study the nonlinear continuous-time 

control systems with the time delayed non-affine in-
put are considered with a state-space representation 
of the form:

                  

2
0 1 2( ) ( ( )) ( ( )) ( ) ( ( )) ( ) ... ( ( )) ( )

or ( ) ( ( ), ( ))

m
mx t f x t g x t u t D g x t u t D g x t u t D

x t f x t u t D
= + − + − + + −

= −


                   
(1)

where nx R∈  is the vector of the states represent-
ing an open and connected set, u R∈  is the input vari-
able, and D is the system’s constant time-delay (dead-
time) that directly affects the input. It is assumed 
tha t 0 : n nf R R→ , : n n

ig R R→ , 1, 2, ,i m=  and
n nf R R R× → are smooth mappings.

An equidistant grid on the time axis with mesh
1 0k kT t t+= − > is considered where sampling inter-

val is 1[ , ) [ ,( 1) )k kt t kT k T+ = +  and T is the sampling 
period. Furthermore, we suppose the time-delay D
and meshT are related as follows.

                       D qT γ= +                                 (2)
where {0,1,2,...}q∈ and 0 Tγ≤ < . Equivalently, 

the time-delay D is customarily represented as an in-

teger multiple of the sampling period plus a fractional 
part of T .

It is also assumed that system (1) is driven by an 
input that is piecewise constant over the sampling 
interval, i.e. the zero-order hold assumption (ZOH) 
holds true.

For the ZOH, while 0D = ,

         ( ) ( ) ( ) constantu t u kT u k= ≡ =                 (3)
for kT t kT T≤ < + .
Under the ZOH assumption and the above no-

tation, it is rather straightforward to verify that the 
“delayed” input variable attains the following values 
with expressions within the sampling interval, while

0D ≠ ,

                 

( ) ( 1)    [ , )
( )

( ) ( )     [ , )
u kT qT T u k q t kT kT

u t D
u kT qT u k q t kT kT T

γ
γ

− − ≡ − − ∈ +
− =  − ≡ − ∈ + +          

                               (4)

3. Discretization of nonlinear non-affine de-
layed systems using matrix exponential algorithm

3.1. Discretization of nonlinear systems with 
delay-free input

Delay-free 0=D nonlinear control systems are 
considered with state-space representations of the 
form:

                                (5)
Consider the sampling time interval 1[ , )k kt t + , and 

suppose that kutu =)( , 1[ , )k kt t t +∈ . Let us denote,

( ) ( ) kt x t xξ = −                                                                      (6)
where ( )k kx x t= , 1[ , )k kt t t +∈ .
We then get the following approximation

( )
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k
f x
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ξ
∂

≈ +
∂                                                           (7)
( )

( ( )) ( ) ( )k
k

g x
g x t g x t

x
ξ

∂
≈ +

∂                                                           (8)

Based on the above, within the time interval
1[ , )k kt t + , Eq. (5) can be approximated through the fol-

lowing expression:

 

( ) ( )
( ) ( ) ( ) ( ) ( ( ) ( ))

( ) ( )
               ( ( ) ( ) ) ( ) ( ) ( )

k k
k k k

k k
k k k k k k

f x g x
x t t f x t g x t u

x x
f x g x

f x g x u u t f J t
x x

ξ ξ ξ

ξ ξ

∂ ∂
= = + + +

∂ ∂
∂ ∂

= + + + = +
∂ ∂




(9)

where
             ( , ) ( ) ( )k k k k k kf f x u f x g x u= = + 

            (10)

           
( ) ( )

( , ) k k
k k k k

f x g x
J J x u u

x x
∂ ∂

= = +
∂ ∂           (11)

Rewriting Eq. (9), we obtain

          ( ) ( ) ( )k kx t t f J tζ ξ= = + , ( ) 0ktξ =               (12)
Assume that 0N > is an integer number and denote 

that

                            
1k kt t

h
N

+ −
=

                           (13)
Using the new step of discretization h , Eq. (12) 

can be replaced by the following equation:
( ( 1) ) ( )

( )k k
k k k

t i h t ih
f J t ih

h
ξ ξ

ξ
+ + − +

= + +

               
(14)
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where (0,  1,  ...,  1)i N∈ − . Then we can get

  ( ( 1) ) ( ) ( )k k k kt i h J h t ih hfξ ξ+ + = + + +I 
, ( ) 0ktξ =    (15)

where I is an identity matrix with the appropriate 
dimension. From Eq. (15) we can get:

           

1

1
0

( ) ( ) ( )
N

i
k k k k

i
t t Nh h J h fξ ξ

−

+
=

= + = +∑ I 

      (16)

Consequently, the discretization form of Eq. (5) 
can be calculated using Eq. (17).

1

1 1
0

( ) ( ( , ) ) ( , )
N

i
k k k k k k k k

i
x x t x h J x u h f x uξ

−

+ +
=

= + = + +∑ I  (17)

where functions ( , )k kJ x u and ( , )k kf x u are defined in 
Eqs. (10-11).

The systems (5) can also be solved in another way 
that is different with the method of (17).

Here, introduce an extended vector,

                           

( )
( )

1
t

t
ξ

η
 

=  
                            (18)

Then, system (12) can be rewritten in the form

               
k 0

0
( ) ( ),  (t )=

1kt C tη η η η
 

= = 
 



            (19)

where
( 1) ( 1)

0 0
n nk k

k T

J fC R + × + 
= ∈ 
 



, 0 is n dimension-

al zero column vector, and 0T
is n dimensional zero 

row vector.
Solving Eq. (19), we can get that,

              
1( )

1 0( ) k k kc t t
kt eη η+⋅ −
+ =                              (20)

In [16] a computation method of the exponential 
of a matrix was presented. It will be reviewed briefly 
in the following.

Let Z be a square matrix and I the corresponding 
identity matrix. The exact formula

                   
lim

N
Z

N

Ze I
N→∞

 = + 
 

                         (21)

provides the truncated approximation

                          

N
Z Ze I

N
 ≅ + 
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for a suitable value of N.
An improved form is

                           

2
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Combined (22) and (20), there is
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From (24) and (20), we can obtain
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where ( ) ( 1)0 n nI R × +∈ .
Hence
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Eq. (26) can be used to obtain the discrete time 
form of nonlinear systems.

3.2. Discretization of nonlinear non-affine de-
layed systems

The discretization method presented in Section 
3.1 can be extended to the case of nonlinear systems 
with delayed nonaffine input. Based on the prelimi-
naries presented in Section 2, since the time delay is 

introduced, we should consider each sampling time 
interval[ , ( 1) )kT k T+ as two subintervals, [ , )kT kT γ+
and [ , )kT kT Tγ+ + .

In order to apply the discretization method of (26), 
we should choose 1N and 2N firstly, and makes it meet 
the requirement

                             
1

2

N
N T

γ
γ

≈
−

                          (27)
   
where 1N and 2N are both positive natural numbers. 

Eq. (27) indicates that the calculation step lengths of
[ , )kT kT γ+ and [ , )kT kT Tγ+ + are nearly identical.

Applying (26) for the subinterval[ , )kT kT γ+ , we 
get
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where
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Applying (26) for the subinterval[ , )kT kT Tγ+ + , 
we get
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where
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By using Eq. (28) and Eq. (32), the sampled data 
representation of the nonlinear non-affine delayed 
system can be obtained.

4. Simulation
The performance of the proposed time discre-

tization method was evaluated by applying it to a 
nonaffine time delayed nonlinear system. Reference 
solutions for the system are required to validate the 
proposed time-discretization method. In this paper 
the Matlab ODE solver is used to obtain reference 
solutions. The discrete values obtained at every time 
step using the proposed time-discretization method 
are compared to the values obtained using the Matlab 

T=0.01s, D=0.006s, x1=1.0, x2=-1.0

Steps Matlab
(x1)

Maple
(x1)

Matlab
(x2)

Maple
(x2)

100 0.6907 0.6891 -0.6197 -0.6216
200 0.6117 0.6119 -0.4300 -0.4300
300 0.5661 0.5652 -0.5516 -0.5499
400 0.5563 0.5572 -0.9727 -0.9701
500 0.4937 0.4930 -0.6997 -0.7010
600 0.5576 0.5588 -0.4405 -0.4403
700 0.4997 0.4986 -0.5031 -0.5012
800 0.5573 0.5586 -0.9071 -0.8990
900 0.4691 0.4689 -0.7920 -0.7914
1000 0.5631 0.5637 -0.4616 -0.4611

ODE solver at the corresponding time steps. The pro-
posed discretization method is realized using Maple.

The system considered in this paper is assumed to 
be a nonlinear control system.

              

3 2
1 1 1 2 2 1

2
2 2

3cos( )x x x x u x x

x x u

= − + +

=




                 (36)

In this simulation the input u was assumed to 
be sin(1.5 )u t= . And we choose the parameters as

1(0) 1.0x = , 2 (0) -1.0x = , 0.01T s= , 0.006D s= ; a n d
1(0) 1.0x = , 2 (0) -1.0x = , 0.01T s= , 0.084D s= , respec-

tively. The results obtained by the Matlab ODE solver 
and the proposed discretization method of these two 
cases are shown in Table 1 and Table 2. Figs. 1 and 2 
show the errors of the state 1x and 2x of these two cas-
es, respectively. From the results it can be seen that 
the proposed discretization method can provide good 
enough results for nonlinear nonaffine time-delayed 
systems.

Table1. Discretization results of case 1

T=0.01s, D=0.084s, x1=1.0, x2=-1.0

Steps Matlab
(x1)

Maple
(x1)

Matlab
(x2)

Maple
(x2)

100 0.6712 0.6698 -0.6508 -0.6529
200 0.6234 0.6228 -0.4330 -0.4331
300 0.5534 0.5525 -0.5299 -0.5282
400 0.5668 0.5675 -0.9484 -0.9450
500 0.4866 0.4860 -0.7365 -0.7376
600 0.5646 0.5657 -0.4478 -0.4477
700 0.4922 0.4911 -0.4869 -0.4853
800 0.5643 0.5658 -0.8719 -0.8629
900 0.4676 0.4676 -0.8311 -0.8301
1000 0.5635 0.5639 -0.4736 -0.4731

Table2. Discretization results of case 2
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Figure 1.  State error responses of the system in case 1

Figure 2.  State error responses of the system in case 2

5. Conclusion
This paper presented an approach to obtain dis-

crete-time representations of nonlinear control sys-
tems with nonaffine time-delay inputs in their control 

schemes. This proposed discretization algorithm is 
based on matrix exponential algorithm. The proposed 
scheme provided a finite-dimensional representation 
for nonlinear systems with nonaffine time-delay in-
puts enabling existing controller design techniques 
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to be applied. The performance of the proposed dis-
cretization scheme was evaluated using a nonlinear 
system. These simulations demonstrate the accura-
cy of the proposed discretization method. Extension 
of the proposed approach to nonlinear systems with 
time-varying delay is feasible, and it will be the sub-
ject of future research.
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