Wellbore Temperature Distribution in Hydraulic-Fracturing Horizontal Wells for Gas

Junjun Cai*, Yonggang Duan

State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, Sichuan, P.R. China

Abstract

Use of distributed temperature sensors (DTS) to monitor the productive zones of horizontal wellbores by real-time temperature profile measurement is becoming an industry standard. Well completion method, skin factor and non-Darcy flow phenomenon are among operating parameters potentially related to DTS data. In order to study on the above-mentioned relationship, this paper establishes temperature models which consider skin factor and non-Darcy flow, in turn whose foundation are mass-, momentum-, and energy-balance equations. The models presented here account for heat convection, fluid expansion, heat conduction and viscous dissipative heating. Once configured, these models were applied to predict wellbore temperature distribution and analyze factors influencing the wellbore temperature profile. Arriving temperature and wellbore temperature curves are plotted by

12. F. A. Tahir, H. Aubert “EQUIVALENT ELECTRICAL CIRCUIT FOR DESIGNING MEMS-CONTROLLED REFLECTARRAY PHASE SHIFTERS” Progress In Electromagnetics Research, PIER,100, 1a“12, 2010.
Hydraulic-fracturing horizontal wells have been used widely to enhance extractive production by increasing wellbore access to the target reservoir. Due to well completion methods and other factors, the local inflow rates along a horizontal well may still vary. Recently, advanced technology, such as distributed temperature sensors (DTS), have been installed on horizontal wellbores as a part of well completion, which new technology provides us continuous, accurate downhole temperature data. Thus, it is possible to reveal the downhole physical characteristics from interpretation of measured temperature and pressure data, for which a temperature distribution model for hydraulic-fracturing horizontal wellbores is necessary.

Temperature logs have been used successfully in vertical wells to locate gas entry, detect casing leaks, evaluate cement placement and estimate inflow profiles [1]. Interpretations of temperature profiles in horizontal wells were reported 10 years ago as useful for identifying the types of fluid flowing in a wellbore [2, 3]. In 2004, Foucault et al. [4] used DTS data to detect the water entry location in a horizontal well. Fryer et al. [5] monitored real time temperature profiles to identify and correlate production changes in a multi-zone reservoir well in 2005. Moreover, Johnson et al. [6] and Huebsch et al. [7] calculated gas flow profiles from measured DTS data. Julian et al. [8] showed that DTS data can be used to determine leak locations in vertical wells. Huckabee [9] applied DTS data to diagnose fracture stimulation and evaluate well performance. In 2010, Li et al. [10] observed DTS bottom-level reservoir temperature data, plus inverted inflow profile along the horizontal section and set up a downhole inflow control valve (ICV) to research the relationship between temperature profile and inflow profile. Gonzalez et al. [11] found conventional testing methods unsuitable for the development of shale gas reservoirs, and presented a DTS technology application able to provide continuous, real-time downhole information to describe shale gas well fracturing and production.

Temperature models began with temperature logging. Thus far, researchers have put forward some models to simulate temperature changes under both steady-state and varying conditions. In 1962, Ramey [12] posited the earliest temperature model. Based on Ramey’s model and considering the condensation factor, that is, the change of phase state, Satter [13] modified the model of steam injection wells to calculate heat loss and wellbore temperature. In 1972, Witterholt et al. [14] proposed a model describing heat exchange between fluid, wellbore and reservoir, by which the wellbore temperature and surrounding reservoir temperature distribution are calculated. The following year, Steffensen R J et al. [15] reported a Joule-Thomson effect generated by pressure loss where fluid flux can significantly affect the temperature curve. Miller [16] presented one of the earliest transient-temperature-of-reservoir models in 1980, which model also predicts how temperature changes in a reservoir will be affected by fluid inflow or outflow from a wellbore. The following decade, Sagar et al. [17] established a general model to predict temperature profiles in two-phase-flow wells, while extending Ramey’s equation to inclined wells and accounting for the Joule-Thomson effect caused by pressure change along the wellbore. Subsequently, Hasan and Kabir [18] developed Ramey’s model further. Izgec et al. [19] developed a coupled wellbore-reservoir model for transient fluids and heat flow. By analytic methods, Yoshioka et al. [20] studied horizontal wellbore temperature, while Zhuoyi Li [21] also researched horizontal wellbore temperature phenomena using numerical solution.

On the basis of previous works, this paper establishes both wellbore and reservoir models, as well as a coupled model, which consider skin factor and non-Darcy flow. Arriving temperature, which impacts temperature along wellbore, is also investigated here, and wellbore temperature distribution curves of fracturing horizontal wells are plotted. Finally, the effects of relevant parameters and different well completion...
methods are also analyzed.

2. Model Development

The overall model consists of a wellbore model, a reservoir model and a coupled model, which models are detailed in the following sections.

2.1 Wellbore Model

For this study, the wellbore model developed by Yoshioka et al. [22] was adopted directly, which consists of both wellbore flow and wellbore thermal models. Wellbore flow and thermal behaviors are treated here as steady-state phenomena.

2.1.1 Wellbore Flow Model

The mass conservation equation for a given well-bore under steady-state conditions is:

$$\frac{d}{dx}\left(\rho v_i\right) = \frac{2\gamma}{R} \rho V_i$$ \hspace{1cm} (1)

where γ is the ratio of the open section versus the total well length.

According to momentum balance, the pressure equation is obtained by the following formula:

$$\frac{dp_{well}}{dx} = -\frac{f}{R} \frac{d}{dx}\left(\rho v_i^2\right) - \rho g (\sin \theta)$$ \hspace{1cm} (2)

Here, f is the friction factor, which was established as a model for horizontal wells by Ouyang[23] in 1998.

2.1.2 Wellbore Thermal Model

Based on the energy balance equation for wellbore temperature, a horizontal well is assumed to be in a steady state, with one-dimensional temperature. Ignoring kinetic shear, viscous shear and heat transfer between fluids, the ultimate one-dimensional, single-phase, steady-state wellbore temperature equation is[27]:

$$K \frac{dT_{well}}{dx} - \frac{\rho}{R} \frac{d}{dx}\left(\rho v_i C_p \left(1 - \gamma\right) U_i\right) = \frac{s}{C_p} \sin \theta$$ \hspace{1cm} (3)

The general expression of $U_{r,j}$ was first proposed by Willhite [26], where

$$U_{r,j} = \gamma (\rho v C_p) r_{r,j} + (1 - \gamma) U_i$$ \hspace{1cm} (4)

In this case, heat conduction between fluids is also neglected. In terms of this model, therefore, the heat flux in the open pipe area consists of only convection as depicted in Figure 2.

2.2 Reservoir Model

2.2.1 Mass Balance

The mass balance for fluid flow in permeable media is given as:

$$\frac{\partial}{\partial t} \left(\rho S_s \phi\right) + \nabla \cdot \left(\rho \bar{u} \bar{S_s}\right) = 0$$ \hspace{1cm} (5)

while, according to Darcy’s law, the Darcy velocity is:

$$\bar{u} = -\frac{k}{\mu} \left(\nabla p + \rho g\right)$$ \hspace{1cm} (6)

In this work, a numerical simulation (Eclipse, 2006) was used solve the above equations.

2.2.2 Energy Balance

Neglecting kinetic energy change and considering convection, conduction, viscous dissipation and thermal expansion in the heat-transfer problem, while also dropping the time derivative term, yields[20]:

$$\rho c_p \left(\bar{u} \cdot \nabla T_s\right) - \rho c_p \left(\bar{u} \cdot \nabla p_s\right) - \nabla \cdot \left(K_s \nabla T_s\right) + \bar{u} \cdot \nabla p_s = 0$$ \hspace{1cm} (7)

In this study, no flow in the z-direction within the reservoir is assumed. Here, we use the finite-difference method to find the reservoir’s temperature distribution. When not otherwise specified, the top and
Engineering science

bottom boundaries are assigned a constant temperature, while all other reservoir boundaries are set equal to distributed geothermal temperature. The resulting finite-difference equation is:

\[AP_{i,j,k}T^{n+1}_{i,j,k} = AW_{i,j,k}T_{i+1,j,k}^{n+1} + AE_{i,j,k}T_{i-1,j,k}^{n+1} + AS_{i,j,k}T_{i,j+1,k}^{n+1} + AN_{i,j,k}T_{i,j-1,k}^{n+1} + B_{i,j,k} \] \quad (8)

In this case, all parameters can be solved by numerical dispersion, from which we obtain the following large linear matrix of temperature equations:

\[A \cdot T = B \] \quad (9)

where \(A \) is the coefficients matrix, \(T \) is the unknown temperature vector, and \(B \) is the source term. Coefficients matrix \(A \) has five linear domains, which include non-zero elements, while all other elements in matrix \(A \) are zero. From here, a program can be developed to solve this set of equations to obtain the temperature in a gas reservoir.

2.3 Coupled Model

The objective of the coupled model is to find the arriving temperature, \(T_i \), which is dependant on method of well completion. For a well contained in the grid, Figure 3 illustrates the thermal/flow system used in this work.

2.3.1 Engaged Reservoir and Wellbore

For this investigation, the model of a coupled reservoir and wellbore developed by Zhuoyi Li[21] was adopted directly. The arriving temperature, \(T_i \), as the link between reservoir grid temperature and wellbore temperature, must be found to solve temperature equations 3 and 7. Hence, the pressure from the grid to the wellbore becomes:

\[\frac{d^2 p}{dr^2} + \frac{1}{r} \frac{dp}{dr} = 0 \] \quad (10)

By combining equations 7 and 10 under appropriate boundary conditions, we obtain the arriving temperature thus: \(T_i = T |_{r=r_e} \).

During drilling, well completion and/or production, formation damage may occur, increasing loss of pressure and affecting temperature behavior at a given flow rate. Stabilized grid distribution is one approach which prevents formation damage, which damage can now be estimated by use of effective permeability. Assuming that the formation damage is within radial range, as shown in Figure 4, where permeability is represented by \(k_d \) and radius by \(r_a \), the effective permeability is derived as:

\[k_e = \ln \left(\frac{r_a}{r_e} \right) \left(\frac{1}{k_r} \frac{1}{r_e} + \frac{1}{k_z} \frac{1}{r_a} \right) \] \quad (11)

Figure 3. Integrated temperature behavior

In this situation, gas viscosity is low and gas flow velocity is usually very high, especially in the area near the wellbore. Considering non-Darcy flow, the relationship between pressure and flow rate is:

\[\psi_p - \psi_{pw} = aq_{sc} + bq_{sc}^2 \] \quad (12)

where \(a \) is the Darcy flow factor and \(b \) is the non-Darcy flow factor. Here, \(\psi \) represents pseudo-pressure as:

\[\psi = \frac{2}{r_0} \int_{r_0}^r \frac{P}{\mu Z} dr \] \quad (13)

2.3.2 Disengaged Reservoir and Wellbore

When the reservoir and wellbore are not engaged, pressure changes in the reservoir have no effect on the pressure in the wellbore, since there is no fluid interaction between the reservoir and wellbore. In this case, Equation 7 becomes:
Engineering science

\[
\frac{1}{r} \frac{d}{dr} \left(r \frac{dT}{dr} \right) = 0
\]

(14)

As well, the concomitant boundary conditions would be:

\[
T = T_{\text{mid}}
\]

and

\[
K_\alpha \frac{dT}{dr} \bigg|_{r=r_w} = U \left(T \big|_{r=r_w} - T_w \right)
\]

(15)

(16)

Solving Equation 14, we obtain the arriving temperature, \(T \), of no connection between reservoir and wellbore. According to the behavior of these equations, reservoir grid, arriving temperature and wellbore temperature are bound by interaction.

3. Solution Procedure

During solution, the interactive nature of grid and temperature characteristics is in full play. Solving first for gas reservoir pressure distribution, wellbore pressure is consequently also solved. Next, apply the found reservoir pressure value to solve for reservoir temperature. Finally, solve wellbore temperature using the coupled model iteratively until the solution reaches convergence, which procedure is detailed in Figure 5. Convergence condition is defined by a relative error of less than 10^{-6}, which may be calculated by the equation below.

\[
\left(\hat{T}_{\text{well}}^j - \hat{T}_{\text{well}}^{j+1} \right)^T \left(\hat{T}_{\text{well}}^j - \hat{T}_{\text{well}}^{j+1} \right) < 10^{-6}
\]

(17)

where \(\hat{T}_{\text{well}}^j \) is the matrix of wellbore temperature, and superscript \(T \) is the transpose of the matrix.

Figure 5. Calculation procedure for temperature distribution along the wellbore
Engineering science

4. Results And Discussions

As shown above, we may obtain the reservoir temperature and wellbore temperature iteratively. The model well considered here is completed, cased and perforated (Fig. 6); plus, it is assumed that the well is producing at a constant rate of 24000 m3/d. The production profile is shown in Figure 7, while details of the well and reservoir properties are shown in Table 1.

![Synthetic well completion method](image)

Figure 6. Synthetic well completion method

Table 1. Basic parameters of reservoir and well

<table>
<thead>
<tr>
<th>Parameters</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reservoir depth (m)</td>
<td>2000</td>
</tr>
<tr>
<td>Initial reservoir temperature (Degrees Celsius)</td>
<td>82</td>
</tr>
<tr>
<td>Initial reservoir pressure(Mpa)</td>
<td>28.5</td>
</tr>
<tr>
<td>Permeability (mD)</td>
<td>10</td>
</tr>
<tr>
<td>Reservoir thickness (m)</td>
<td>10</td>
</tr>
<tr>
<td>Gas density (kg/m3)</td>
<td>150</td>
</tr>
<tr>
<td>Heat capacity [J/(kg·(Degree Celsius)]</td>
<td>2150</td>
</tr>
<tr>
<td>Total heat conductivity [w/m·(degree Celsius)]</td>
<td>2.25</td>
</tr>
<tr>
<td>Reservoir size (m×m×m)</td>
<td>600×890×10</td>
</tr>
<tr>
<td>Grid size</td>
<td>60×89×1</td>
</tr>
<tr>
<td>Horizontal well length (m)</td>
<td>600</td>
</tr>
<tr>
<td>Well radius (m)</td>
<td>0.1</td>
</tr>
<tr>
<td>ID (m)</td>
<td>0.066</td>
</tr>
<tr>
<td>OD (m)</td>
<td>0.0889</td>
</tr>
<tr>
<td>Pipe wall: relative roughness</td>
<td>0.01</td>
</tr>
</tbody>
</table>

![Gas flow rate profile in synthetic example](image)

Figure 7. Gas flow rate profile in synthetic example

The arriving temperature, T_i, is related to skin factors and the perforated locations. Figure 8 depicts comparison between the arriving temperature profile comparison with and without the skin factor, wherein arriving temperature in consideration of skin factor is lower than that without skin factor. The cause of this difference is that greater pressure loss is generated near the wellbore under damaged formation conditions, leading to reduced arriving temperature as the result of the Joule-Thomson effect. Another factor of concern is change in arriving temperature along the perforated sections, which holds the line along the non-perforated sections.

Temperature along the wellbore is also related to skin factor and the perforated locations. As shown in Figure 9, a clear influence is effected by skin factor on the wellbore temperature.
Temperature along the non-perforated section changes very little, whereas changes along the perforated sections are obvious. Also revealed in the below figure is increased wellbore temperature with decreasing skin factor.

![Figure 8](image1.png)

Figure 8. Arriving temperature profile with and without skin factor

![Figure 9](image2.png)

Figure 9. Wellbore temperature profile comparison between different skin factors

Figure 10 illustrates comparison between skin factors on the wellbore temperature derivative curve. When compared with the wellbore temperature profile (Fig. 9), the temperature derivative data from non-perforated sections are almost constant, which phenomenon is helpful in identification of non-perforated wellbore sections.

![Figure 10](image3.png)

Figure 10. Temperature derivative comparison between different skin factors

Differences between arriving temperature and wellbore temperature are shown in Figure 11, where the non-perforated sections are also easily recognized by a horizontal line. In addition, the temperature difference is smaller here, accounting for greater skin factor due to intensified Joule-Thomson effect near the wellbore.

As mentioned earlier, the temperature along wellbore is also related to non-Darcy flow factor. First, the arriving temperature profile is to be analyzed, whose profile comparison with and without non-Darcy flow factor is depicted in Figure 12. As shown, the arriving temperature with non-Darcy flow factor is less than that without non-Darcy flow factor, the reason for which is generation of greater pressure loss near the wellbore under non-Darcy flow phenomenon, in turn producing decreased arriving temperature by the Joule-Thomson effect. In addition, perforated sections may also be easily recognized by jumping data.
Figure 11. Difference between arriving temperature and wellbore temperature

Figure 12. T_i with and without non-Darcy flow factor

Figure 13 illustrates the wellbore temperature profile comparison between different non-Darcy flow factors, and Figure 14 shows temperature differences between the arrival location and the wellbore. Both figures display perforated sections and non-perforated sections, however Figure 14 is more clear. As well, the non-Darcy flow factor affects the wellbore temperature. According to Figure 13, greater non-Darcy flow factor generates lesser wellbore temperature due to reduced arriving temperature. Furthermore, Figure 14 confirms that greater non-Darcy flow factor generates increased temperature differential between arrival location and the wellbore along perforated sections. Temperature differential is minimal along non-perforated sections, providing a basis for non-perforated sections judgment.

Figure 13. Wellbore temperature profile comparison of different non-Darcy flow factors

Figure 14. Difference between arriving temperature and wellbore temperature
Temperature along the wellbore is also related to well completion methods, for which consideration Figure 15 presents 4 different well completion methods with constant wellbore length. It is assumed that the horizontal well is producing at a constant production rate of 60000m³/d, without consideration of skin factor and non-Darcy flow, but considering the Joule-Thomson effect. By calculating 4 cases, temperature and temperature derivative curves (Fig.16) were derived and plotted.

![Schematic Diagrams of 4 Well Completion Methods](image)

Figure 15. Schematic Diagrams of 4 Well Completion Methods

It can be seen from Figure 16 a-d that well completion methods have a significant effect on temperature distribution and temperature derivative, especially along the perforated areas. However, according to the temperature derivative curves, the impacts are relatively moderate along the non-perforated interval. Figures 16(a) and (b) present temperature derivative curves for non-perforated sections as horizontal lines, while the perforated sections vary. The difference here is caused by lack of gas flow into the wellbore along non-perforated sections. As a result, wellbore temperature decrease is constant due to constant gas flow rate in the wellbore. By contrast, gas continuously flows into the wellbore along the perforated sections, thus gradually increasing the gas flow velocity in the wellbore, leading to a greater temperature decrease.

The influences of manufactured fractures on temperature and temperature curve can be seen in Figures 16 c and d, where temperature curves decrease significantly along the fractured sections. In the same position, however, temperature derivative curves for the fractured sections show data jumps, easing identification of fractures.
5. Conclusions And Recommendations

A wellbore temperature model for hydraulic-fracturing horizontal wells in gas reservoirs is established in this paper, which considers skin factor and non-Darcy flow factor. This model can be applied to predict the temperature along the wellbore. By studying both coupled reservoir and wellbore temperature models, temperature response type curves may be plotted by algorithm, and temperature influence factors may also be analyzed.

Here, skin factor, non-Darcy flow factor and well completion method are all demonstrated to affect temperature along the wellbore. As well, variations in data may serve as indicator for identification of perforated sections.

This progressive model is the basis of interpreting temperature phenomena in hydraulic-fracturing horizontal wells. On this basis, future investigation should produce a needed inverse model, able to translate DTS data into flow rate profile, skin factor and other physical characteristics, further refining drilling and extraction processes.

References

2. Brown, G., Storer, D., McAllister, K., Al-Asi

